NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  oprabbii Unicode version

Theorem oprabbii 5566
Description: Equivalent wff's yield equal operation class abstractions. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by set.mm contributors, 28-May-1995.) (Revised by set.mm contributors, 24-Jul-2012.)
Hypothesis
Ref Expression
oprabbii.1
Assertion
Ref Expression
oprabbii
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem oprabbii
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2353 . 2
2 oprabbii.1 . . . 4
32a1i 10 . . 3
43oprabbidv 5565 . 2
51, 4ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wceq 1642  coprab 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-oprab 5529
This theorem is referenced by:  oprab4  5567  oprabbi2i  5648  mpt2v  5720
  Copyright terms: Public domain W3C validator