New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqid | Unicode version |
Description: Law of identity
(reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This law is thought to have originated with Aristotle (Metaphysics, Zeta, 17, 1041 a, 10-20: "Therefore, inquiring why a thing is itself, it's inquiring nothing; ... saying that the thing is itself constitutes the sole reasoning and the sole cause, in every case, to the question of why the man is man or the musician musician."). (Thanks to Stefan Allan and Benoît Jubin for this information.) (Contributed by NM, 5-Aug-1993.) (Revised by Benoît Jubin, 14-Oct-2017.) |
Ref | Expression |
---|---|
eqid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 227 | . 2 | |
2 | 1 | eqriv 2350 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqidd 2354 neirr 2522 vex 2863 reu6 3026 sbsbc 3051 sbceqal 3098 dfnul2 3553 dfnul3 3554 snidg 3759 prid1g 3826 tpid1 3830 tpid2 3831 tpid3 3833 int0 3941 dfiin2g 4001 opkth1g 4131 snel1c 4141 opkabssvvk 4209 eladdci 4400 nnc0suc 4413 elsuci 4415 nulel0c 4423 0fin 4424 nnsucelr 4429 lefinaddc 4451 tfinnul 4492 opabbii 4627 syl5eqbr 4673 syl5eqbrr 4674 syl6breq 4679 ididg 4872 xpcan 5058 xpcan2 5059 funfn 5137 dffn4 5276 f1orn 5297 f1o00 5318 tz6.12i 5349 dffn5 5364 funfv 5376 fvopab4g 5389 funfvop 5401 funiunfv 5468 f1elima 5475 1stfo 5506 2ndfo 5507 swapf1o 5512 opfv1st 5515 opfv2nd 5516 oprabbii 5566 ov2ag 5599 ov6g 5601 mpteq2ia 5660 mpt2eq12 5663 mpteq2da 5667 dmmptg 5685 fvmptd 5703 fvmptnf 5724 f1od 5727 op1st2nd 5791 clos1basesucg 5885 dfnnc3 5886 ecelqsg 5980 elqsn0 5994 qsdisj 5996 ecoptocl 5997 enmap2 6069 enmap1 6075 enprmaplem6 6082 enprmap 6083 nenpw1pw 6087 enpw 6088 nulnnc 6119 ncspw1eu 6160 pw1eltc 6163 ce2 6193 ce2ncpw11c 6195 sbthlem2 6205 sbthlem3 6206 tce2 6237 spacssnc 6285 spacid 6286 spaccl 6287 spacind 6288 nchoicelem3 6292 frecxp 6315 frecxpg 6316 dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 frecsuc 6323 dmsnfn 6328 scancan 6332 |
Copyright terms: Public domain | W3C validator |