| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ra5 | Unicode version | ||
| Description: Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1798. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| ra5.1 |
|
| Ref | Expression |
|---|---|
| ra5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2620 |
. . . 4
| |
| 2 | bi2.04 350 |
. . . . 5
| |
| 3 | 2 | albii 1566 |
. . . 4
|
| 4 | 1, 3 | bitri 240 |
. . 3
|
| 5 | ra5.1 |
. . . 4
| |
| 6 | 5 | stdpc5 1798 |
. . 3
|
| 7 | 4, 6 | sylbi 187 |
. 2
|
| 8 | df-ral 2620 |
. 2
| |
| 9 | 7, 8 | syl6ibr 218 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |