New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmo2 | Unicode version |
Description: Alternate definition of restricted "at most one." Note that is not equivalent to (in analogy to reu6 3025); to see this, let be the empty set. However, one direction of this pattern holds; see rmo2i 3132. (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmo2.1 |
Ref | Expression |
---|---|
rmo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2622 | . 2 | |
2 | nfv 1619 | . . . 4 | |
3 | rmo2.1 | . . . 4 | |
4 | 2, 3 | nfan 1824 | . . 3 |
5 | 4 | mo2 2233 | . 2 |
6 | impexp 433 | . . . . 5 | |
7 | 6 | albii 1566 | . . . 4 |
8 | df-ral 2619 | . . . 4 | |
9 | 7, 8 | bitr4i 243 | . . 3 |
10 | 9 | exbii 1582 | . 2 |
11 | 1, 5, 10 | 3bitri 262 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wnf 1544 wcel 1710 wmo 2205 wral 2614 wrmo 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-ral 2619 df-rmo 2622 |
This theorem is referenced by: rmo2i 3132 |
Copyright terms: Public domain | W3C validator |