New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ra5 | GIF version |
Description: Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1798. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
ra5.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
ra5 | ⊢ (∀x ∈ A (φ → ψ) → (φ → ∀x ∈ A ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2620 | . . . 4 ⊢ (∀x ∈ A (φ → ψ) ↔ ∀x(x ∈ A → (φ → ψ))) | |
2 | bi2.04 350 | . . . . 5 ⊢ ((x ∈ A → (φ → ψ)) ↔ (φ → (x ∈ A → ψ))) | |
3 | 2 | albii 1566 | . . . 4 ⊢ (∀x(x ∈ A → (φ → ψ)) ↔ ∀x(φ → (x ∈ A → ψ))) |
4 | 1, 3 | bitri 240 | . . 3 ⊢ (∀x ∈ A (φ → ψ) ↔ ∀x(φ → (x ∈ A → ψ))) |
5 | ra5.1 | . . . 4 ⊢ Ⅎxφ | |
6 | 5 | stdpc5 1798 | . . 3 ⊢ (∀x(φ → (x ∈ A → ψ)) → (φ → ∀x(x ∈ A → ψ))) |
7 | 4, 6 | sylbi 187 | . 2 ⊢ (∀x ∈ A (φ → ψ) → (φ → ∀x(x ∈ A → ψ))) |
8 | df-ral 2620 | . 2 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
9 | 7, 8 | syl6ibr 218 | 1 ⊢ (∀x ∈ A (φ → ψ) → (φ → ∀x ∈ A ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |