| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralnex | Unicode version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| ralnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2620 |
. 2
| |
| 2 | alinexa 1578 |
. . 3
| |
| 3 | df-rex 2621 |
. . 3
| |
| 4 | 2, 3 | xchbinxr 302 |
. 2
|
| 5 | 1, 4 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: dfrex2 2628 ralinexa 2660 nrex 2717 nrexdv 2718 r19.43 2767 rabeq0 3573 iindif2 4036 evenodddisj 4517 rexiunxp 4825 |
| Copyright terms: Public domain | W3C validator |