NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralnex Unicode version

Theorem ralnex 2625
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
ralnex

Proof of Theorem ralnex
StepHypRef Expression
1 df-ral 2620 . 2
2 alinexa 1578 . . 3
3 df-rex 2621 . . 3
42, 3xchbinxr 302 . 2
51, 4bitri 240 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540  wex 1541   wcel 1710  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620  df-rex 2621
This theorem is referenced by:  dfrex2  2628  ralinexa  2660  nrex  2717  nrexdv  2718  r19.43  2767  rabeq0  3573  iindif2  4036  evenodddisj  4517  rexiunxp  4825
  Copyright terms: Public domain W3C validator