New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexnal | Unicode version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
rexnal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2621 | . 2 | |
2 | exanali 1585 | . . 3 | |
3 | df-ral 2620 | . . 3 | |
4 | 2, 3 | xchbinxr 302 | . 2 |
5 | 1, 4 | bitri 240 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wex 1541 wcel 1710 wral 2615 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 df-rex 2621 |
This theorem is referenced by: dfral2 2627 rexanali 2661 2ralor 2781 uni0b 3917 iundif2 4034 dfint3 4319 dfnnc2 4396 nndisjeq 4430 ncfinraiselem2 4481 nnpweqlem1 4523 rexxpf 4829 transex 5911 refex 5912 antisymex 5913 connexex 5914 extex 5916 symex 5917 nchoicelem11 6300 |
Copyright terms: Public domain | W3C validator |