New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > re2luk1 | Unicode version |
Description: luk-1 1420 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
re2luk1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rb-imdf 1515 | . . . 4 | |
2 | 1 | rblem7 1528 | . . 3 |
3 | rb-imdf 1515 | . . . . . . . 8 | |
4 | 3 | rblem6 1527 | . . . . . . 7 |
5 | rb-ax2 1518 | . . . . . . . 8 | |
6 | rb-ax4 1520 | . . . . . . . . . 10 | |
7 | rb-ax3 1519 | . . . . . . . . . 10 | |
8 | 6, 7 | rbsyl 1521 | . . . . . . . . 9 |
9 | rb-ax4 1520 | . . . . . . . . . . 11 | |
10 | rb-ax3 1519 | . . . . . . . . . . 11 | |
11 | 9, 10 | rbsyl 1521 | . . . . . . . . . 10 |
12 | rb-ax2 1518 | . . . . . . . . . 10 | |
13 | 11, 12 | anmp 1516 | . . . . . . . . 9 |
14 | 8, 13 | rblem1 1522 | . . . . . . . 8 |
15 | 5, 14 | rbsyl 1521 | . . . . . . 7 |
16 | 4, 15 | anmp 1516 | . . . . . 6 |
17 | rb-imdf 1515 | . . . . . . 7 | |
18 | 17 | rblem7 1528 | . . . . . 6 |
19 | 16, 18 | rblem1 1522 | . . . . 5 |
20 | rb-ax1 1517 | . . . . . 6 | |
21 | rb-ax2 1518 | . . . . . . 7 | |
22 | rb-ax4 1520 | . . . . . . . . . 10 | |
23 | rb-ax3 1519 | . . . . . . . . . 10 | |
24 | 22, 23 | rbsyl 1521 | . . . . . . . . 9 |
25 | rb-ax4 1520 | . . . . . . . . . 10 | |
26 | rb-ax3 1519 | . . . . . . . . . 10 | |
27 | 25, 26 | rbsyl 1521 | . . . . . . . . 9 |
28 | 24, 27, 11 | rblem4 1525 | . . . . . . . 8 |
29 | rb-ax2 1518 | . . . . . . . 8 | |
30 | 28, 29 | rbsyl 1521 | . . . . . . 7 |
31 | 21, 30 | rbsyl 1521 | . . . . . 6 |
32 | 20, 31 | anmp 1516 | . . . . 5 |
33 | 19, 32 | rbsyl 1521 | . . . 4 |
34 | rb-imdf 1515 | . . . . 5 | |
35 | 34 | rblem6 1527 | . . . 4 |
36 | 33, 35 | rbsyl 1521 | . . 3 |
37 | 2, 36 | rbsyl 1521 | . 2 |
38 | rb-imdf 1515 | . . 3 | |
39 | 38 | rblem7 1528 | . 2 |
40 | 37, 39 | anmp 1516 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |