NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  re2luk1 GIF version

Theorem re2luk1 1530
Description: luk-1 1420 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re2luk1 ((φψ) → ((ψχ) → (φχ)))

Proof of Theorem re2luk1
StepHypRef Expression
1 rb-imdf 1515 . . . 4 ¬ (¬ (¬ ((ψχ) → (φχ)) (¬ (ψχ) (φχ))) ¬ (¬ (¬ (ψχ) (φχ)) ((ψχ) → (φχ))))
21rblem7 1528 . . 3 (¬ (¬ (ψχ) (φχ)) ((ψχ) → (φχ)))
3 rb-imdf 1515 . . . . . . . 8 ¬ (¬ (¬ (ψχ) ψ χ)) ¬ (¬ (¬ ψ χ) (ψχ)))
43rblem6 1527 . . . . . . 7 (¬ (ψχ) ψ χ))
5 rb-ax2 1518 . . . . . . . 8 (¬ (¬ (ψχ) ¬ ¬ (¬ ψ χ)) (¬ ¬ (¬ ψ χ) ¬ (ψχ)))
6 rb-ax4 1520 . . . . . . . . . 10 (¬ (¬ (ψχ) ¬ (ψχ)) ¬ (ψχ))
7 rb-ax3 1519 . . . . . . . . . 10 (¬ ¬ (ψχ) (¬ (ψχ) ¬ (ψχ)))
86, 7rbsyl 1521 . . . . . . . . 9 (¬ ¬ (ψχ) ¬ (ψχ))
9 rb-ax4 1520 . . . . . . . . . . 11 (¬ (¬ (¬ ψ χ) ¬ (¬ ψ χ)) ¬ (¬ ψ χ))
10 rb-ax3 1519 . . . . . . . . . . 11 (¬ ¬ (¬ ψ χ) (¬ (¬ ψ χ) ¬ (¬ ψ χ)))
119, 10rbsyl 1521 . . . . . . . . . 10 (¬ ¬ (¬ ψ χ) ¬ (¬ ψ χ))
12 rb-ax2 1518 . . . . . . . . . 10 (¬ (¬ ¬ (¬ ψ χ) ¬ (¬ ψ χ)) (¬ (¬ ψ χ) ¬ ¬ (¬ ψ χ)))
1311, 12anmp 1516 . . . . . . . . 9 (¬ (¬ ψ χ) ¬ ¬ (¬ ψ χ))
148, 13rblem1 1522 . . . . . . . 8 (¬ (¬ (ψχ) ψ χ)) (¬ (ψχ) ¬ ¬ (¬ ψ χ)))
155, 14rbsyl 1521 . . . . . . 7 (¬ (¬ (ψχ) ψ χ)) (¬ ¬ (¬ ψ χ) ¬ (ψχ)))
164, 15anmp 1516 . . . . . 6 (¬ ¬ (¬ ψ χ) ¬ (ψχ))
17 rb-imdf 1515 . . . . . . 7 ¬ (¬ (¬ (φχ) φ χ)) ¬ (¬ (¬ φ χ) (φχ)))
1817rblem7 1528 . . . . . 6 (¬ (¬ φ χ) (φχ))
1916, 18rblem1 1522 . . . . 5 (¬ (¬ (¬ ψ χ) φ χ)) (¬ (ψχ) (φχ)))
20 rb-ax1 1517 . . . . . 6 (¬ (¬ ψ χ) (¬ (¬ φ ψ) φ χ)))
21 rb-ax2 1518 . . . . . . 7 (¬ ((¬ (¬ ψ χ) φ χ)) ¬ (¬ φ ψ)) (¬ (¬ φ ψ) (¬ (¬ ψ χ) φ χ))))
22 rb-ax4 1520 . . . . . . . . . 10 (¬ (¬ (¬ φ ψ) ¬ (¬ φ ψ)) ¬ (¬ φ ψ))
23 rb-ax3 1519 . . . . . . . . . 10 (¬ ¬ (¬ φ ψ) (¬ (¬ φ ψ) ¬ (¬ φ ψ)))
2422, 23rbsyl 1521 . . . . . . . . 9 (¬ ¬ (¬ φ ψ) ¬ (¬ φ ψ))
25 rb-ax4 1520 . . . . . . . . . 10 (¬ ((¬ φ χ) φ χ)) φ χ))
26 rb-ax3 1519 . . . . . . . . . 10 (¬ (¬ φ χ) ((¬ φ χ) φ χ)))
2725, 26rbsyl 1521 . . . . . . . . 9 (¬ (¬ φ χ) φ χ))
2824, 27, 11rblem4 1525 . . . . . . . 8 (¬ ((¬ (¬ φ ψ) φ χ)) ¬ (¬ ψ χ)) ((¬ (¬ ψ χ) φ χ)) ¬ (¬ φ ψ)))
29 rb-ax2 1518 . . . . . . . 8 (¬ (¬ (¬ ψ χ) (¬ (¬ φ ψ) φ χ))) ((¬ (¬ φ ψ) φ χ)) ¬ (¬ ψ χ)))
3028, 29rbsyl 1521 . . . . . . 7 (¬ (¬ (¬ ψ χ) (¬ (¬ φ ψ) φ χ))) ((¬ (¬ ψ χ) φ χ)) ¬ (¬ φ ψ)))
3121, 30rbsyl 1521 . . . . . 6 (¬ (¬ (¬ ψ χ) (¬ (¬ φ ψ) φ χ))) (¬ (¬ φ ψ) (¬ (¬ ψ χ) φ χ))))
3220, 31anmp 1516 . . . . 5 (¬ (¬ φ ψ) (¬ (¬ ψ χ) φ χ)))
3319, 32rbsyl 1521 . . . 4 (¬ (¬ φ ψ) (¬ (ψχ) (φχ)))
34 rb-imdf 1515 . . . . 5 ¬ (¬ (¬ (φψ) φ ψ)) ¬ (¬ (¬ φ ψ) (φψ)))
3534rblem6 1527 . . . 4 (¬ (φψ) φ ψ))
3633, 35rbsyl 1521 . . 3 (¬ (φψ) (¬ (ψχ) (φχ)))
372, 36rbsyl 1521 . 2 (¬ (φψ) ((ψχ) → (φχ)))
38 rb-imdf 1515 . . 3 ¬ (¬ (¬ ((φψ) → ((ψχ) → (φχ))) (¬ (φψ) ((ψχ) → (φχ)))) ¬ (¬ (¬ (φψ) ((ψχ) → (φχ))) ((φψ) → ((ψχ) → (φχ)))))
3938rblem7 1528 . 2 (¬ (¬ (φψ) ((ψχ) → (φχ))) ((φψ) → ((ψχ) → (φχ))))
4037, 39anmp 1516 1 ((φψ) → ((ψχ) → (φχ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator