NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  re2luk2 Unicode version

Theorem re2luk2 1531
Description: luk-2 1421 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re2luk2

Proof of Theorem re2luk2
StepHypRef Expression
1 rb-ax4 1520 . . . 4
2 rb-ax3 1519 . . . . . . 7
31, 2rbsyl 1521 . . . . . 6
4 rb-ax4 1520 . . . . . . . . 9
5 rb-ax3 1519 . . . . . . . . 9
64, 5rbsyl 1521 . . . . . . . 8
7 rb-ax2 1518 . . . . . . . 8
86, 7anmp 1516 . . . . . . 7
98, 3rblem1 1522 . . . . . 6
103, 9anmp 1516 . . . . 5
1110, 3rblem1 1522 . . . 4
121, 11rbsyl 1521 . . 3
13 rb-imdf 1515 . . . 4
1413rblem6 1527 . . 3
1512, 14rbsyl 1521 . 2
16 rb-imdf 1515 . . 3
1716rblem7 1528 . 2
1815, 17anmp 1516 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator