NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reuv Unicode version

Theorem reuv 2875
Description: A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 2622 . 2
2 vex 2863 . . . 4
32biantrur 492 . . 3
43eubii 2213 . 2
51, 4bitr4i 243 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358   wcel 1710  weu 2204  wreu 2617  cvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-reu 2622  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator