New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexv | Unicode version |
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
rexv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2620 | . 2 | |
2 | vex 2862 | . . . 4 | |
3 | 2 | biantrur 492 | . . 3 |
4 | 3 | exbii 1582 | . 2 |
5 | 1, 4 | bitr4i 243 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wcel 1710 wrex 2615 cvv 2859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rex 2620 df-v 2861 |
This theorem is referenced by: rexcom4 2878 spesbc 3127 df1c2 4168 elimakvg 4258 preaddccan2lem1 4454 elrn 4896 elima1c 4947 dfco2 5080 dfco2a 5081 elncs 6119 addccan2nclem1 6263 |
Copyright terms: Public domain | W3C validator |