NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexv Unicode version

Theorem rexv 2874
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 2621 . 2
2 vex 2863 . . . 4
32biantrur 492 . . 3
43exbii 1582 . 2
51, 4bitr4i 243 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358  wex 1541   wcel 1710  wrex 2616  cvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-rex 2621  df-v 2862
This theorem is referenced by:  rexcom4  2879  spesbc  3128  df1c2  4169  elimakvg  4259  preaddccan2lem1  4455  elrn  4897  elima1c  4948  dfco2  5081  dfco2a  5082  elncs  6120  addccan2nclem1  6264
  Copyright terms: Public domain W3C validator