| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > rexv | Unicode version | ||
| Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) | 
| Ref | Expression | 
|---|---|
| rexv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rex 2621 | 
. 2
 | |
| 2 | vex 2863 | 
. . . 4
 | |
| 3 | 2 | biantrur 492 | 
. . 3
 | 
| 4 | 3 | exbii 1582 | 
. 2
 | 
| 5 | 1, 4 | bitr4i 243 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rex 2621 df-v 2862 | 
| This theorem is referenced by: rexcom4 2879 spesbc 3128 df1c2 4169 elimakvg 4259 preaddccan2lem1 4455 elrn 4897 elima1c 4948 dfco2 5081 dfco2a 5082 elncs 6120 addccan2nclem1 6264 | 
| Copyright terms: Public domain | W3C validator |