New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reuv | GIF version |
Description: A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
Ref | Expression |
---|---|
reuv | ⊢ (∃!x ∈ V φ ↔ ∃!xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2622 | . 2 ⊢ (∃!x ∈ V φ ↔ ∃!x(x ∈ V ∧ φ)) | |
2 | vex 2863 | . . . 4 ⊢ x ∈ V | |
3 | 2 | biantrur 492 | . . 3 ⊢ (φ ↔ (x ∈ V ∧ φ)) |
4 | 3 | eubii 2213 | . 2 ⊢ (∃!xφ ↔ ∃!x(x ∈ V ∧ φ)) |
5 | 1, 4 | bitr4i 243 | 1 ⊢ (∃!x ∈ V φ ↔ ∃!xφ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∃!weu 2204 ∃!wreu 2617 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-reu 2622 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |