New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addccan2nclem1 | Unicode version |
Description: Lemma for addccan2nc 6266. Stratification helper theorem. (Contributed by Scott Fenton, 2-Aug-2019.) |
Ref | Expression |
---|---|
addccan2nclem1 | AddC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco 4884 | . . 3 AddC AddC | |
2 | brcnv 4893 | . . . . . 6 | |
3 | brres 4950 | . . . . . 6 | |
4 | ancom 437 | . . . . . . . . 9 | |
5 | elxp2 4803 | . . . . . . . . . . 11 | |
6 | rexv 2874 | . . . . . . . . . . 11 | |
7 | vex 2863 | . . . . . . . . . . . . 13 | |
8 | opeq2 4580 | . . . . . . . . . . . . . 14 | |
9 | 8 | eqeq2d 2364 | . . . . . . . . . . . . 13 |
10 | 7, 9 | rexsn 3769 | . . . . . . . . . . . 12 |
11 | 10 | exbii 1582 | . . . . . . . . . . 11 |
12 | 5, 6, 11 | 3bitri 262 | . . . . . . . . . 10 |
13 | 12 | anbi1i 676 | . . . . . . . . 9 |
14 | 4, 13 | bitri 240 | . . . . . . . 8 |
15 | exancom 1586 | . . . . . . . . 9 | |
16 | 19.41v 1901 | . . . . . . . . 9 | |
17 | 15, 16 | bitri 240 | . . . . . . . 8 |
18 | 14, 17 | bitr4i 243 | . . . . . . 7 |
19 | vex 2863 | . . . . . . . . . . . 12 | |
20 | 19 | br1st 4859 | . . . . . . . . . . 11 |
21 | 20 | anbi1i 676 | . . . . . . . . . 10 |
22 | 19.41v 1901 | . . . . . . . . . 10 | |
23 | 21, 22 | bitr4i 243 | . . . . . . . . 9 |
24 | 23 | exbii 1582 | . . . . . . . 8 |
25 | eqeq1 2359 | . . . . . . . . . . . . 13 | |
26 | opth 4603 | . . . . . . . . . . . . 13 | |
27 | 25, 26 | syl6bb 252 | . . . . . . . . . . . 12 |
28 | 27 | pm5.32ri 619 | . . . . . . . . . . 11 |
29 | equcom 1680 | . . . . . . . . . . . . 13 | |
30 | 29 | anbi2i 675 | . . . . . . . . . . . 12 |
31 | 30 | anbi1i 676 | . . . . . . . . . . 11 |
32 | opeq2 4580 | . . . . . . . . . . . . . . 15 | |
33 | 32 | equcoms 1681 | . . . . . . . . . . . . . 14 |
34 | 33 | adantl 452 | . . . . . . . . . . . . 13 |
35 | 34 | eqeq2d 2364 | . . . . . . . . . . . 12 |
36 | 35 | pm5.32i 618 | . . . . . . . . . . 11 |
37 | 28, 31, 36 | 3bitri 262 | . . . . . . . . . 10 |
38 | df-3an 936 | . . . . . . . . . 10 | |
39 | 37, 38 | bitr4i 243 | . . . . . . . . 9 |
40 | 39 | 2exbii 1583 | . . . . . . . 8 |
41 | 24, 40 | bitri 240 | . . . . . . 7 |
42 | opeq1 4579 | . . . . . . . . 9 | |
43 | 42 | eqeq2d 2364 | . . . . . . . 8 |
44 | opeq2 4580 | . . . . . . . . 9 | |
45 | 44 | eqeq2d 2364 | . . . . . . . 8 |
46 | 19, 7, 43, 45 | ceqsex2v 2897 | . . . . . . 7 |
47 | 18, 41, 46 | 3bitri 262 | . . . . . 6 |
48 | 2, 3, 47 | 3bitri 262 | . . . . 5 |
49 | 48 | anbi1i 676 | . . . 4 AddC AddC |
50 | 49 | exbii 1582 | . . 3 AddC AddC |
51 | 19, 7 | opex 4589 | . . . 4 |
52 | breq1 4643 | . . . 4 AddC AddC | |
53 | 51, 52 | ceqsexv 2895 | . . 3 AddC AddC |
54 | 1, 50, 53 | 3bitri 262 | . 2 AddC AddC |
55 | 19, 7 | braddcfn 5827 | . 2 AddC |
56 | eqcom 2355 | . 2 | |
57 | 54, 55, 56 | 3bitri 262 | 1 AddC |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 wrex 2616 cvv 2860 csn 3738 cplc 4376 cop 4562 class class class wbr 4640 c1st 4718 ccom 4722 cxp 4771 ccnv 4772 cres 4775 AddC caddcfn 5746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-addcfn 5747 |
This theorem is referenced by: addccan2nclem2 6265 |
Copyright terms: Public domain | W3C validator |