New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addccan2nclem1 | Unicode version |
Description: Lemma for addccan2nc 6265. Stratification helper theorem. (Contributed by Scott Fenton, 2-Aug-2019.) |
Ref | Expression |
---|---|
addccan2nclem1 | AddC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco 4883 | . . 3 AddC AddC | |
2 | brcnv 4892 | . . . . . 6 | |
3 | brres 4949 | . . . . . 6 | |
4 | ancom 437 | . . . . . . . . 9 | |
5 | elxp2 4802 | . . . . . . . . . . 11 | |
6 | rexv 2873 | . . . . . . . . . . 11 | |
7 | vex 2862 | . . . . . . . . . . . . 13 | |
8 | opeq2 4579 | . . . . . . . . . . . . . 14 | |
9 | 8 | eqeq2d 2364 | . . . . . . . . . . . . 13 |
10 | 7, 9 | rexsn 3768 | . . . . . . . . . . . 12 |
11 | 10 | exbii 1582 | . . . . . . . . . . 11 |
12 | 5, 6, 11 | 3bitri 262 | . . . . . . . . . 10 |
13 | 12 | anbi1i 676 | . . . . . . . . 9 |
14 | 4, 13 | bitri 240 | . . . . . . . 8 |
15 | exancom 1586 | . . . . . . . . 9 | |
16 | 19.41v 1901 | . . . . . . . . 9 | |
17 | 15, 16 | bitri 240 | . . . . . . . 8 |
18 | 14, 17 | bitr4i 243 | . . . . . . 7 |
19 | vex 2862 | . . . . . . . . . . . 12 | |
20 | 19 | br1st 4858 | . . . . . . . . . . 11 |
21 | 20 | anbi1i 676 | . . . . . . . . . 10 |
22 | 19.41v 1901 | . . . . . . . . . 10 | |
23 | 21, 22 | bitr4i 243 | . . . . . . . . 9 |
24 | 23 | exbii 1582 | . . . . . . . 8 |
25 | eqeq1 2359 | . . . . . . . . . . . . 13 | |
26 | opth 4602 | . . . . . . . . . . . . 13 | |
27 | 25, 26 | syl6bb 252 | . . . . . . . . . . . 12 |
28 | 27 | pm5.32ri 619 | . . . . . . . . . . 11 |
29 | equcom 1680 | . . . . . . . . . . . . 13 | |
30 | 29 | anbi2i 675 | . . . . . . . . . . . 12 |
31 | 30 | anbi1i 676 | . . . . . . . . . . 11 |
32 | opeq2 4579 | . . . . . . . . . . . . . . 15 | |
33 | 32 | equcoms 1681 | . . . . . . . . . . . . . 14 |
34 | 33 | adantl 452 | . . . . . . . . . . . . 13 |
35 | 34 | eqeq2d 2364 | . . . . . . . . . . . 12 |
36 | 35 | pm5.32i 618 | . . . . . . . . . . 11 |
37 | 28, 31, 36 | 3bitri 262 | . . . . . . . . . 10 |
38 | df-3an 936 | . . . . . . . . . 10 | |
39 | 37, 38 | bitr4i 243 | . . . . . . . . 9 |
40 | 39 | 2exbii 1583 | . . . . . . . 8 |
41 | 24, 40 | bitri 240 | . . . . . . 7 |
42 | opeq1 4578 | . . . . . . . . 9 | |
43 | 42 | eqeq2d 2364 | . . . . . . . 8 |
44 | opeq2 4579 | . . . . . . . . 9 | |
45 | 44 | eqeq2d 2364 | . . . . . . . 8 |
46 | 19, 7, 43, 45 | ceqsex2v 2896 | . . . . . . 7 |
47 | 18, 41, 46 | 3bitri 262 | . . . . . 6 |
48 | 2, 3, 47 | 3bitri 262 | . . . . 5 |
49 | 48 | anbi1i 676 | . . . 4 AddC AddC |
50 | 49 | exbii 1582 | . . 3 AddC AddC |
51 | 19, 7 | opex 4588 | . . . 4 |
52 | breq1 4642 | . . . 4 AddC AddC | |
53 | 51, 52 | ceqsexv 2894 | . . 3 AddC AddC |
54 | 1, 50, 53 | 3bitri 262 | . 2 AddC AddC |
55 | 19, 7 | braddcfn 5826 | . 2 AddC |
56 | eqcom 2355 | . 2 | |
57 | 54, 55, 56 | 3bitri 262 | 1 AddC |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 wrex 2615 cvv 2859 csn 3737 cplc 4375 cop 4561 class class class wbr 4639 c1st 4717 ccom 4721 cxp 4770 ccnv 4771 cres 4774 AddC caddcfn 5745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-fo 4793 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-addcfn 5746 |
This theorem is referenced by: addccan2nclem2 6264 |
Copyright terms: Public domain | W3C validator |