NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbccom Unicode version

Theorem sbccom 3118
Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccom  [.  ]. [.  ].  [.  ]. [.  ].
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem sbccom
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbccomlem 3117 . . . 4  [.  ]. [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ]. [.  ].
2 sbccomlem 3117 . . . . . . 7  [.  ]. [.  ].  [.  ]. [.  ].
32sbcbii 3102 . . . . . 6  [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ].
4 sbccomlem 3117 . . . . . 6  [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ].
53, 4bitri 240 . . . . 5  [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ].
65sbcbii 3102 . . . 4  [.  ]. [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ]. [.  ].
7 sbccomlem 3117 . . . . 5  [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ].
87sbcbii 3102 . . . 4  [.  ]. [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ]. [.  ].
91, 6, 83bitr3i 266 . . 3  [.  ]. [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ]. [.  ].
10 sbcco 3069 . . 3  [.  ]. [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ].
11 sbcco 3069 . . 3  [.  ]. [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ].
129, 10, 113bitr3i 266 . 2  [.  ]. [.  ]. [.  ].  [.  ]. [.  ]. [.  ].
13 sbcco 3069 . . 3  [.  ]. [.  ].  [.  ].
1413sbcbii 3102 . 2  [.  ]. [.  ]. [.  ].  [.  ]. [.  ].
15 sbcco 3069 . . 3  [.  ]. [.  ].  [.  ].
1615sbcbii 3102 . 2  [.  ]. [.  ]. [.  ].  [.  ]. [.  ].
1712, 14, 163bitr3i 266 1  [.  ]. [.  ].  [.  ]. [.  ].
Colors of variables: wff setvar class
Syntax hints:   wb 176   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  csbcomg  3160  csbabg  3198  cnvopab  5031  eqerlem  5961
  Copyright terms: Public domain W3C validator