NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcralt Unicode version

Theorem sbcralt 3119
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
Assertion
Ref Expression
sbcralt  F/_  [.  ].  [.  ].
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   ()   (,)

Proof of Theorem sbcralt
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcco 3069 . 2  [.  ]. [.  ].  [.  ].
2 simpl 443 . . 3  F/_
3 sbsbc 3051 . . . . 5  [.  ].
4 nfcv 2490 . . . . . . 7  F/_
5 nfs1v 2106 . . . . . . 7  F/
64, 5nfral 2668 . . . . . 6  F/
7 sbequ12 1919 . . . . . . 7
87ralbidv 2635 . . . . . 6
96, 8sbie 2038 . . . . 5
103, 9bitr3i 242 . . . 4  [.  ].
11 nfnfc1 2493 . . . . . . 7  F/
F/_
12 nfcvd 2491 . . . . . . . 8  F/_  F/_
13 id 19 . . . . . . . 8  F/_  F/_
1412, 13nfeqd 2504 . . . . . . 7  F/_  F/
1511, 14nfan1 1881 . . . . . 6  F/ F/_
16 dfsbcq2 3050 . . . . . . 7  [.  ].
1716adantl 452 . . . . . 6 
F/_  [.  ].
1815, 17ralbid 2633 . . . . 5 
F/_  [.  ].
1918adantll 694 . . . 4  F/_  [.  ].
2010, 19syl5bb 248 . . 3  F/_  [.  ].  [.  ].
212, 20sbcied 3083 . 2  F/_  [.  ]. [.  ].  [.  ].
221, 21syl5bbr 250 1  F/_  [.  ].  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642  wsb 1648   wcel 1710   F/_wnfc 2477  wral 2615   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-sbc 3048
This theorem is referenced by:  sbcrext  3120
  Copyright terms: Public domain W3C validator