| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sbcex | Unicode version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| sbcex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-sbc 3048 | 
. 2
 | |
| 2 | elex 2868 | 
. 2
 | |
| 3 | 1, 2 | sylbi 187 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-sbc 3048 | 
| This theorem is referenced by: sbcco 3069 sbc5 3071 sbcan 3089 sbcor 3091 sbcal 3094 sbcex2 3096 spesbc 3128 opelopabsb 4698 | 
| Copyright terms: Public domain | W3C validator |