NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcan Unicode version

Theorem sbcan 3089
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcan  [.  ].  [.  ].  [.  ].

Proof of Theorem sbcan
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcex 3056 . 2  [.  ].
2 sbcex 3056 . . 3  [.  ].
32adantl 452 . 2 
[.  ].  [.  ].
4 dfsbcq2 3050 . . 3 
[.  ].
5 dfsbcq2 3050 . . . 4  [.  ].
6 dfsbcq2 3050 . . . 4  [.  ].
75, 6anbi12d 691 . . 3  [.  ].  [.  ].
8 sban 2069 . . 3
94, 7, 8vtoclbg 2916 . 2  [.  ].  [.  ].  [.  ].
101, 3, 9pm5.21nii 342 1  [.  ].  [.  ].  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358   wceq 1642  wsb 1648   wcel 1710  cvv 2860   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  inopab  4863
  Copyright terms: Public domain W3C validator