NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcex GIF version

Theorem sbcex 3056
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcex ([̣A / xφA V)

Proof of Theorem sbcex
StepHypRef Expression
1 df-sbc 3048 . 2 ([̣A / xφA {x φ})
2 elex 2868 . 2 (A {x φ} → A V)
31, 2sylbi 187 1 ([̣A / xφA V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  {cab 2339  Vcvv 2860  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862  df-sbc 3048
This theorem is referenced by:  sbcco  3069  sbc5  3071  sbcan  3089  sbcor  3091  sbcal  3094  sbcex2  3096  spesbc  3128  opelopabsb  4698
  Copyright terms: Public domain W3C validator