NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3exp1 GIF version

Theorem 3exp1 1167
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((φ ψ χ) θ) → τ)
Assertion
Ref Expression
3exp1 (φ → (ψ → (χ → (θτ))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((φ ψ χ) θ) → τ)
21ex 423 . 2 ((φ ψ χ) → (θτ))
323exp 1150 1 (φ → (ψ → (χ → (θτ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator