NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3imp2 GIF version

Theorem 3imp2 1166
Description: Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3imp1.1 (φ → (ψ → (χ → (θτ))))
Assertion
Ref Expression
3imp2 ((φ (ψ χ θ)) → τ)

Proof of Theorem 3imp2
StepHypRef Expression
1 3imp1.1 . . 3 (φ → (ψ → (χ → (θτ))))
213impd 1165 . 2 (φ → ((ψ χ θ) → τ))
32imp 418 1 ((φ (ψ χ θ)) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator