New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantlrr | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Ref | Expression |
---|---|
adantlrr | ⊢ (((φ ∧ (ψ ∧ τ)) ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((ψ ∧ τ) → ψ) | |
2 | adantl2.1 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
3 | 1, 2 | sylanl2 632 | 1 ⊢ (((φ ∧ (ψ ∧ τ)) ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: fnfrec 6321 |
Copyright terms: Public domain | W3C validator |