| Step | Hyp | Ref
| Expression |
| 1 | | breldm 4912 |
. . . . . . . . . 10
⊢ (xFy → x ∈ dom F) |
| 2 | 1 | adantl 452 |
. . . . . . . . 9
⊢ ((φ ∧ xFy) → x
∈ dom F) |
| 3 | | fnfrec.1 |
. . . . . . . . . . 11
⊢ F = FRec (G, I) |
| 4 | | fnfrec.2 |
. . . . . . . . . . 11
⊢ (φ → G ∈ Funs ) |
| 5 | | fnfrec.3 |
. . . . . . . . . . 11
⊢ (φ → I ∈ dom G) |
| 6 | | fnfrec.4 |
. . . . . . . . . . 11
⊢ (φ → ran G ⊆ dom G) |
| 7 | 3, 4, 5, 6 | dmfrec 6317 |
. . . . . . . . . 10
⊢ (φ → dom F = Nn
) |
| 8 | 7 | adantr 451 |
. . . . . . . . 9
⊢ ((φ ∧ xFy) → dom F
= Nn ) |
| 9 | 2, 8 | eleqtrd 2429 |
. . . . . . . 8
⊢ ((φ ∧ xFy) → x
∈ Nn
) |
| 10 | 9 | adantrr 697 |
. . . . . . 7
⊢ ((φ ∧
(xFy ∧ xFz)) →
x ∈ Nn ) |
| 11 | 3 | frecexg 6313 |
. . . . . . . . . . . 12
⊢ (G ∈ Funs → F ∈ V) |
| 12 | | fnfreclem1 6318 |
. . . . . . . . . . . 12
⊢ (F ∈ V →
{w ∣
∀y∀z((wFy ∧ wFz) → y =
z)} ∈
V) |
| 13 | 4, 11, 12 | 3syl 18 |
. . . . . . . . . . 11
⊢ (φ → {w ∣ ∀y∀z((wFy ∧ wFz) → y =
z)} ∈
V) |
| 14 | | breq1 4643 |
. . . . . . . . . . . . . 14
⊢ (w = 0c → (wFy ↔ 0cFy)) |
| 15 | | breq1 4643 |
. . . . . . . . . . . . . 14
⊢ (w = 0c → (wFz ↔ 0cFz)) |
| 16 | 14, 15 | anbi12d 691 |
. . . . . . . . . . . . 13
⊢ (w = 0c → ((wFy ∧ wFz) ↔ (0cFy ∧ 0cFz))) |
| 17 | 16 | imbi1d 308 |
. . . . . . . . . . . 12
⊢ (w = 0c → (((wFy ∧ wFz) → y =
z) ↔ ((0cFy ∧ 0cFz) →
y = z))) |
| 18 | 17 | 2albidv 1627 |
. . . . . . . . . . 11
⊢ (w = 0c → (∀y∀z((wFy ∧ wFz) → y =
z) ↔ ∀y∀z((0cFy ∧ 0cFz) →
y = z))) |
| 19 | | breq1 4643 |
. . . . . . . . . . . . . 14
⊢ (w = t →
(wFy ↔
tFy)) |
| 20 | | breq1 4643 |
. . . . . . . . . . . . . 14
⊢ (w = t →
(wFz ↔
tFz)) |
| 21 | 19, 20 | anbi12d 691 |
. . . . . . . . . . . . 13
⊢ (w = t →
((wFy ∧ wFz) ↔
(tFy ∧ tFz))) |
| 22 | 21 | imbi1d 308 |
. . . . . . . . . . . 12
⊢ (w = t →
(((wFy ∧ wFz) →
y = z)
↔ ((tFy ∧ tFz) →
y = z))) |
| 23 | 22 | 2albidv 1627 |
. . . . . . . . . . 11
⊢ (w = t →
(∀y∀z((wFy ∧ wFz) →
y = z)
↔ ∀y∀z((tFy ∧ tFz) →
y = z))) |
| 24 | | breq1 4643 |
. . . . . . . . . . . . . . 15
⊢ (w = (t
+c 1c) → (wFy ↔ (t
+c 1c)Fy)) |
| 25 | | breq1 4643 |
. . . . . . . . . . . . . . 15
⊢ (w = (t
+c 1c) → (wFz ↔ (t
+c 1c)Fz)) |
| 26 | 24, 25 | anbi12d 691 |
. . . . . . . . . . . . . 14
⊢ (w = (t
+c 1c) → ((wFy ∧ wFz) ↔ ((t
+c 1c)Fy ∧ (t
+c 1c)Fz))) |
| 27 | 26 | imbi1d 308 |
. . . . . . . . . . . . 13
⊢ (w = (t
+c 1c) → (((wFy ∧ wFz) → y =
z) ↔ (((t +c 1c)Fy ∧ (t
+c 1c)Fz) →
y = z))) |
| 28 | 27 | 2albidv 1627 |
. . . . . . . . . . . 12
⊢ (w = (t
+c 1c) → (∀y∀z((wFy ∧ wFz) → y =
z) ↔ ∀y∀z(((t +c 1c)Fy ∧ (t
+c 1c)Fz) →
y = z))) |
| 29 | | breq2 4644 |
. . . . . . . . . . . . . . 15
⊢ (y = a →
((t +c
1c)Fy ↔ (t
+c 1c)Fa)) |
| 30 | | breq2 4644 |
. . . . . . . . . . . . . . 15
⊢ (z = b →
((t +c
1c)Fz ↔ (t
+c 1c)Fb)) |
| 31 | 29, 30 | bi2anan9 843 |
. . . . . . . . . . . . . 14
⊢ ((y = a ∧ z = b) → (((t
+c 1c)Fy ∧ (t
+c 1c)Fz) ↔
((t +c
1c)Fa ∧ (t +c 1c)Fb))) |
| 32 | | eqeq12 2365 |
. . . . . . . . . . . . . 14
⊢ ((y = a ∧ z = b) → (y =
z ↔ a = b)) |
| 33 | 31, 32 | imbi12d 311 |
. . . . . . . . . . . . 13
⊢ ((y = a ∧ z = b) → ((((t
+c 1c)Fy ∧ (t
+c 1c)Fz) →
y = z)
↔ (((t +c
1c)Fa ∧ (t +c 1c)Fb) →
a = b))) |
| 34 | 33 | cbval2v 2006 |
. . . . . . . . . . . 12
⊢ (∀y∀z(((t +c 1c)Fy ∧ (t
+c 1c)Fz) →
y = z)
↔ ∀a∀b(((t
+c 1c)Fa ∧ (t
+c 1c)Fb) →
a = b)) |
| 35 | 28, 34 | syl6bb 252 |
. . . . . . . . . . 11
⊢ (w = (t
+c 1c) → (∀y∀z((wFy ∧ wFz) → y =
z) ↔ ∀a∀b(((t +c 1c)Fa ∧ (t
+c 1c)Fb) →
a = b))) |
| 36 | | breq1 4643 |
. . . . . . . . . . . . . 14
⊢ (w = x →
(wFy ↔
xFy)) |
| 37 | | breq1 4643 |
. . . . . . . . . . . . . 14
⊢ (w = x →
(wFz ↔
xFz)) |
| 38 | 36, 37 | anbi12d 691 |
. . . . . . . . . . . . 13
⊢ (w = x →
((wFy ∧ wFz) ↔
(xFy ∧ xFz))) |
| 39 | 38 | imbi1d 308 |
. . . . . . . . . . . 12
⊢ (w = x →
(((wFy ∧ wFz) →
y = z)
↔ ((xFy ∧ xFz) →
y = z))) |
| 40 | 39 | 2albidv 1627 |
. . . . . . . . . . 11
⊢ (w = x →
(∀y∀z((wFy ∧ wFz) →
y = z)
↔ ∀y∀z((xFy ∧ xFz) →
y = z))) |
| 41 | 3, 4, 5, 6 | fnfreclem2 6319 |
. . . . . . . . . . . . . . . 16
⊢ (φ → (0cFy →
y = I)) |
| 42 | 41 | imp 418 |
. . . . . . . . . . . . . . 15
⊢ ((φ ∧
0cFy) → y =
I) |
| 43 | 42 | adantrr 697 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧
(0cFy ∧
0cFz)) → y =
I) |
| 44 | 3, 4, 5, 6 | fnfreclem2 6319 |
. . . . . . . . . . . . . . . 16
⊢ (φ → (0cFz →
z = I)) |
| 45 | 44 | imp 418 |
. . . . . . . . . . . . . . 15
⊢ ((φ ∧
0cFz) → z =
I) |
| 46 | 45 | adantrl 696 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧
(0cFy ∧
0cFz)) → z =
I) |
| 47 | 43, 46 | eqtr4d 2388 |
. . . . . . . . . . . . 13
⊢ ((φ ∧
(0cFy ∧
0cFz)) → y =
z) |
| 48 | 47 | ex 423 |
. . . . . . . . . . . 12
⊢ (φ → ((0cFy ∧ 0cFz) →
y = z)) |
| 49 | 48 | alrimivv 1632 |
. . . . . . . . . . 11
⊢ (φ → ∀y∀z((0cFy ∧ 0cFz) →
y = z)) |
| 50 | 4 | ad2antrr 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fa) →
G ∈ Funs ) |
| 51 | 5 | ad2antrr 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fa) →
I ∈ dom
G) |
| 52 | 6 | ad2antrr 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fa) → ran
G ⊆ dom
G) |
| 53 | | simplr 731 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fa) →
t ∈ Nn ) |
| 54 | | simpr 447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fa) →
(t +c
1c)Fa) |
| 55 | 3, 50, 51, 52, 53, 54 | fnfreclem3 6320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fa) → ∃y(tFy ∧ yGa)) |
| 56 | 55 | adantlrr 701 |
. . . . . . . . . . . . . . . . . 18
⊢ (((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) ∧
(t +c
1c)Fa) → ∃y(tFy ∧ yGa)) |
| 57 | 56 | ex 423 |
. . . . . . . . . . . . . . . . 17
⊢ ((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) → ((t +c 1c)Fa → ∃y(tFy ∧ yGa))) |
| 58 | 4 | ad2antrr 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fb) →
G ∈ Funs ) |
| 59 | 5 | ad2antrr 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fb) →
I ∈ dom
G) |
| 60 | 6 | ad2antrr 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fb) → ran
G ⊆ dom
G) |
| 61 | | simplr 731 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fb) →
t ∈ Nn ) |
| 62 | | simpr 447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fb) →
(t +c
1c)Fb) |
| 63 | 3, 58, 59, 60, 61, 62 | fnfreclem3 6320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((φ ∧ t ∈ Nn ) ∧ (t +c 1c)Fb) → ∃z(tFz ∧ zGb)) |
| 64 | 63 | adantlrr 701 |
. . . . . . . . . . . . . . . . . 18
⊢ (((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) ∧
(t +c
1c)Fb) → ∃z(tFz ∧ zGb)) |
| 65 | 64 | ex 423 |
. . . . . . . . . . . . . . . . 17
⊢ ((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) → ((t +c 1c)Fb → ∃z(tFz ∧ zGb))) |
| 66 | 57, 65 | anim12d 546 |
. . . . . . . . . . . . . . . 16
⊢ ((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) → (((t +c 1c)Fa ∧ (t
+c 1c)Fb) →
(∃y(tFy ∧ yGa) ∧ ∃z(tFz ∧ zGb)))) |
| 67 | | eeanv 1913 |
. . . . . . . . . . . . . . . 16
⊢ (∃y∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb)) ↔ (∃y(tFy ∧ yGa) ∧ ∃z(tFz ∧ zGb))) |
| 68 | 66, 67 | syl6ibr 218 |
. . . . . . . . . . . . . . 15
⊢ ((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) → (((t +c 1c)Fa ∧ (t
+c 1c)Fb) → ∃y∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb)))) |
| 69 | | 19.29 1596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((∀y∀z((tFy ∧ tFz) → y =
z) ∧ ∃y∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb))) → ∃y(∀z((tFy ∧ tFz) → y =
z) ∧ ∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb)))) |
| 70 | | 19.29 1596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((∀z((tFy ∧ tFz) → y =
z) ∧ ∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb))) → ∃z(((tFy ∧ tFz) → y =
z) ∧
((tFy ∧ yGa) ∧ (tFz ∧ zGb)))) |
| 71 | 70 | eximi 1576 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃y(∀z((tFy ∧ tFz) → y =
z) ∧ ∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb))) → ∃y∃z(((tFy ∧ tFz) → y =
z) ∧
((tFy ∧ yGa) ∧ (tFz ∧ zGb)))) |
| 72 | 69, 71 | syl 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∀y∀z((tFy ∧ tFz) → y =
z) ∧ ∃y∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb))) → ∃y∃z(((tFy ∧ tFz) → y =
z) ∧
((tFy ∧ yGa) ∧ (tFz ∧ zGb)))) |
| 73 | | pm3.35 570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((tFy ∧ tFz) ∧ ((tFy ∧ tFz) → y =
z)) → y = z) |
| 74 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (y = z →
(yGa ↔
zGa)) |
| 75 | 74 | anbi1d 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (y = z →
((yGa ∧ zGb) ↔
(zGa ∧ zGb))) |
| 76 | 75 | biimpa 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((y = z ∧ (yGa ∧ zGb)) →
(zGa ∧ zGb)) |
| 77 | | elfunsi 5832 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (G ∈ Funs → Fun G) |
| 78 | | funbrfv 5357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (Fun G → (zGa → (G
‘z) = a)) |
| 79 | 4, 77, 78 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (φ → (zGa → (G
‘z) = a)) |
| 80 | | funbrfv 5357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (Fun G → (zGb → (G
‘z) = b)) |
| 81 | 4, 77, 80 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (φ → (zGb → (G
‘z) = b)) |
| 82 | 79, 81 | anim12d 546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (φ → ((zGa ∧ zGb) → ((G
‘z) = a ∧ (G ‘z) =
b))) |
| 83 | | eqtr2 2371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((G ‘z) =
a ∧
(G ‘z) = b) →
a = b) |
| 84 | 76, 82, 83 | syl56 30 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (φ → ((y = z ∧ (yGa ∧ zGb)) →
a = b)) |
| 85 | 84 | exp3a 425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (φ → (y = z →
((yGa ∧ zGb) →
a = b))) |
| 86 | 73, 85 | syl5 28 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (φ → (((tFy ∧ tFz) ∧ ((tFy ∧ tFz) → y =
z)) → ((yGa ∧ zGb) → a =
b))) |
| 87 | 86 | exp3a 425 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (φ → ((tFy ∧ tFz) → (((tFy ∧ tFz) → y =
z) → ((yGa ∧ zGb) → a =
b)))) |
| 88 | 87 | com34 77 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (φ → ((tFy ∧ tFz) → ((yGa ∧ zGb) → (((tFy ∧ tFz) → y =
z) → a = b)))) |
| 89 | 88 | imp3a 420 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (φ → (((tFy ∧ tFz) ∧ (yGa ∧ zGb)) → (((tFy ∧ tFz) → y =
z) → a = b))) |
| 90 | 89 | com12 27 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((tFy ∧ tFz) ∧ (yGa ∧ zGb)) → (φ → (((tFy ∧ tFz) → y =
z) → a = b))) |
| 91 | 90 | an4s 799 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((tFy ∧ yGa) ∧ (tFz ∧ zGb)) → (φ → (((tFy ∧ tFz) → y =
z) → a = b))) |
| 92 | 91 | com3l 75 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (φ → (((tFy ∧ tFz) → y =
z) → (((tFy ∧ yGa) ∧ (tFz ∧ zGb)) → a =
b))) |
| 93 | 92 | imp3a 420 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (φ → ((((tFy ∧ tFz) → y =
z) ∧
((tFy ∧ yGa) ∧ (tFz ∧ zGb))) →
a = b)) |
| 94 | 93 | exlimdvv 1637 |
. . . . . . . . . . . . . . . . . . 19
⊢ (φ → (∃y∃z(((tFy ∧ tFz) → y =
z) ∧
((tFy ∧ yGa) ∧ (tFz ∧ zGb))) →
a = b)) |
| 95 | 94 | adantr 451 |
. . . . . . . . . . . . . . . . . 18
⊢ ((φ ∧ t ∈ Nn ) → (∃y∃z(((tFy ∧ tFz) → y =
z) ∧
((tFy ∧ yGa) ∧ (tFz ∧ zGb))) →
a = b)) |
| 96 | 72, 95 | syl5 28 |
. . . . . . . . . . . . . . . . 17
⊢ ((φ ∧ t ∈ Nn ) → ((∀y∀z((tFy ∧ tFz) → y =
z) ∧ ∃y∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb))) → a =
b)) |
| 97 | 96 | exp3a 425 |
. . . . . . . . . . . . . . . 16
⊢ ((φ ∧ t ∈ Nn ) → (∀y∀z((tFy ∧ tFz) → y =
z) → (∃y∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb)) → a =
b))) |
| 98 | 97 | impr 602 |
. . . . . . . . . . . . . . 15
⊢ ((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) → (∃y∃z((tFy ∧ yGa) ∧ (tFz ∧ zGb)) → a =
b)) |
| 99 | 68, 98 | syld 40 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) → (((t +c 1c)Fa ∧ (t
+c 1c)Fb) →
a = b)) |
| 100 | 99 | alrimivv 1632 |
. . . . . . . . . . . . 13
⊢ ((φ ∧
(t ∈
Nn ∧ ∀y∀z((tFy ∧ tFz) → y =
z))) → ∀a∀b(((t +c 1c)Fa ∧ (t
+c 1c)Fb) →
a = b)) |
| 101 | 100 | expr 598 |
. . . . . . . . . . . 12
⊢ ((φ ∧ t ∈ Nn ) → (∀y∀z((tFy ∧ tFz) → y =
z) → ∀a∀b(((t +c 1c)Fa ∧ (t
+c 1c)Fb) →
a = b))) |
| 102 | 101 | ancoms 439 |
. . . . . . . . . . 11
⊢ ((t ∈ Nn ∧ φ) → (∀y∀z((tFy ∧ tFz) → y =
z) → ∀a∀b(((t +c 1c)Fa ∧ (t
+c 1c)Fb) →
a = b))) |
| 103 | 13, 18, 23, 35, 40, 49, 102 | findsd 4411 |
. . . . . . . . . 10
⊢ ((x ∈ Nn ∧ φ) → ∀y∀z((xFy ∧ xFz) → y =
z)) |
| 104 | 103 | 19.21bbi 1865 |
. . . . . . . . 9
⊢ ((x ∈ Nn ∧ φ) → ((xFy ∧ xFz) → y =
z)) |
| 105 | 104 | ex 423 |
. . . . . . . 8
⊢ (x ∈ Nn → (φ
→ ((xFy ∧ xFz) →
y = z))) |
| 106 | 105 | imp3a 420 |
. . . . . . 7
⊢ (x ∈ Nn → ((φ
∧ (xFy ∧ xFz)) → y =
z)) |
| 107 | 10, 106 | mpcom 32 |
. . . . . 6
⊢ ((φ ∧
(xFy ∧ xFz)) →
y = z) |
| 108 | 107 | ex 423 |
. . . . 5
⊢ (φ → ((xFy ∧ xFz) → y =
z)) |
| 109 | 108 | alrimivv 1632 |
. . . 4
⊢ (φ → ∀y∀z((xFy ∧ xFz) → y =
z)) |
| 110 | 109 | alrimiv 1631 |
. . 3
⊢ (φ → ∀x∀y∀z((xFy ∧ xFz) → y =
z)) |
| 111 | | dffun2 5120 |
. . 3
⊢ (Fun F ↔ ∀x∀y∀z((xFy ∧ xFz) → y =
z)) |
| 112 | 110, 111 | sylibr 203 |
. 2
⊢ (φ → Fun F) |
| 113 | | df-fn 4791 |
. 2
⊢ (F Fn Nn ↔ (Fun
F ∧ dom
F = Nn
)) |
| 114 | 112, 7, 113 | sylanbrc 645 |
1
⊢ (φ → F Fn Nn
) |