NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylanl2 GIF version

Theorem sylanl2 632
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.)
Hypotheses
Ref Expression
sylanl2.1 (φχ)
sylanl2.2 (((ψ χ) θ) → τ)
Assertion
Ref Expression
sylanl2 (((ψ φ) θ) → τ)

Proof of Theorem sylanl2
StepHypRef Expression
1 sylanl2.1 . . 3 (φχ)
21anim2i 552 . 2 ((ψ φ) → (ψ χ))
3 sylanl2.2 . 2 (((ψ χ) θ) → τ)
42, 3sylan 457 1 (((ψ φ) θ) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  mpanlr1  667  adantlrl  700  adantlrr  701  ncssfin  6151  spacind  6287
  Copyright terms: Public domain W3C validator