New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylanl2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (φ → χ) |
sylanl2.2 | ⊢ (((ψ ∧ χ) ∧ θ) → τ) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((ψ ∧ φ) ∧ θ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (φ → χ) | |
2 | 1 | anim2i 552 | . 2 ⊢ ((ψ ∧ φ) → (ψ ∧ χ)) |
3 | sylanl2.2 | . 2 ⊢ (((ψ ∧ χ) ∧ θ) → τ) | |
4 | 2, 3 | sylan 457 | 1 ⊢ (((ψ ∧ φ) ∧ θ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpanlr1 667 adantlrl 700 adantlrr 701 ncssfin 6151 spacind 6287 |
Copyright terms: Public domain | W3C validator |