New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > albi | GIF version |
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albi | ⊢ (∀x(φ ↔ ψ) → (∀xφ ↔ ∀xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi1 178 | . . 3 ⊢ ((φ ↔ ψ) → (φ → ψ)) | |
2 | 1 | al2imi 1561 | . 2 ⊢ (∀x(φ ↔ ψ) → (∀xφ → ∀xψ)) |
3 | bi2 189 | . . 3 ⊢ ((φ ↔ ψ) → (ψ → φ)) | |
4 | 3 | al2imi 1561 | . 2 ⊢ (∀x(φ ↔ ψ) → (∀xψ → ∀xφ)) |
5 | 2, 4 | impbid 183 | 1 ⊢ (∀x(φ ↔ ψ) → (∀xφ ↔ ∀xψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: albii 1566 albidh 1590 19.16 1860 19.17 1861 intmin4 3956 dfiin2g 4001 |
Copyright terms: Public domain | W3C validator |