New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax-gen | GIF version |
Description: Rule of Generalization. The postulated inference rule of pure predicate calculus. See e.g. Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved x = x, we can conclude ∀xx = x or even ∀yx = x. Theorem allt in set.mm shows the special case ∀x ⊤. Theorem spi 1753 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-g.1 | ⊢ φ |
Ref | Expression |
---|---|
ax-gen | ⊢ ∀xφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff φ | |
2 | vx | . 2 setvar x | |
3 | 1, 2 | wal 1540 | 1 wff ∀xφ |
Colors of variables: wff setvar class |
This axiom is referenced by: gen2 1547 mpg 1548 mpgbi 1549 mpgbir 1550 hbth 1552 stdpc6 1687 ax12dgen3 1727 spim 1975 cbv3 1982 equveli 1988 sbft 2025 ax11eq 2193 cesare 2307 camestres 2308 calemes 2319 axi12 2333 ceqsralv 2887 vtocl2 2911 mosub 3015 sbcth 3061 sbciegf 3078 csbiegf 3177 sbcnestg 3186 csbnestg 3187 csbnest1g 3189 int0 3941 dfuni12 4292 nnadjoin 4521 sfintfin 4533 tfinnn 4535 vfinspnn 4542 ssopab2i 4715 relssi 4849 eqrelriv 4851 ssdmrn 5100 funmo 5126 caovmo 5646 mpteq2ia 5660 mpteq2da 5667 clos10 5888 xpassen 6058 frecxp 6315 |
Copyright terms: Public domain | W3C validator |