New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > albii | GIF version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
albii | ⊢ (∀xφ ↔ ∀xψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1564 | . 2 ⊢ (∀x(φ ↔ ψ) → (∀xφ ↔ ∀xψ)) | |
2 | albii.1 | . 2 ⊢ (φ ↔ ψ) | |
3 | 1, 2 | mpg 1548 | 1 ⊢ (∀xφ ↔ ∀xψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 2albii 1567 hbxfrbi 1568 nfbii 1569 alex 1572 2nalexn 1573 alinexa 1578 alexn 1579 19.26-2 1594 19.26-3an 1595 19.35 1600 19.30 1604 19.43OLD 1606 albiim 1611 2albiim 1612 exintrbi 1613 19.8wOLD 1693 alrot3 1738 alrot4 1739 hba1 1786 equsalhw 1838 equsalhwOLD 1839 dvelimhw 1849 19.21-2 1864 19.32 1875 19.31 1876 aaan 1884 19.23vv 1892 pm11.53 1893 19.12vv 1898 ax12olem2 1928 equsal 1960 dvelimh 1964 sbcom 2089 sb8e 2093 sbnf2 2108 2sb6 2113 sbcom2 2114 sb6a 2116 2sb6rf 2118 sbex 2128 sbalv 2129 2exsb 2132 dvelimALT 2133 sbal2 2134 dvelimf-o 2180 ax10-16 2190 sb8eu 2222 eu1 2225 eu2 2229 moanim 2260 2mo 2282 2eu3 2286 2eu4 2287 exists1 2293 eqcom 2355 hblem 2458 abeq2 2459 abeq1 2460 nfceqi 2486 abid2f 2515 ralbii2 2643 r2alf 2650 r3al 2672 r19.21t 2700 r19.23t 2729 rabid2 2789 rabbi 2790 ralv 2873 ceqsralt 2883 ralab 2998 ralrab2 3003 euind 3024 reu2 3025 reu3 3027 rmo4 3030 reu8 3033 rmoim 3036 2reuswap 3039 reuind 3040 2reu5lem2 3043 2reu5lem3 3044 ra5 3131 rmo2 3132 rmo3 3134 dfss2 3263 ss2ab 3335 ss2rab 3343 rabss 3344 uniiunlem 3354 ssequn1 3434 unss 3438 ralunb 3445 ssin 3478 n0f 3559 eqv 3566 disj 3592 disj3 3596 ssdif0 3610 inssdif0 3618 ssundif 3634 sscon34 3662 pwss 3737 ralsns 3764 disjsn 3787 euabsn2 3792 snss 3839 pwpw0 3856 pwsnALT 3883 dfnfc2 3910 unissb 3922 elintrab 3939 ssintrab 3950 intun 3959 intpr 3960 dfiin2g 4001 iunss 4008 axprimlem1 4089 axprimlem2 4090 axxpprim 4091 axsiprim 4094 axtyplowerprim 4095 axins2prim 4096 axins3prim 4097 ninexg 4098 1cex 4143 eqpw1 4163 pw111 4171 ssrelk 4212 eqrelk 4213 elp6 4264 xpkvexg 4286 p6exg 4291 dfuni12 4292 sikexlem 4296 dfimak2 4299 insklem 4305 ins2kexg 4306 ins3kexg 4307 sb8iota 4347 ssfin 4471 nnadjoin 4521 nnadjoinpw 4522 nnpweq 4524 tfinnn 4535 spfininduct 4541 eqop 4612 raliunxp 4824 ssopr 4847 eqopr 4848 dmopab3 4918 dm0rn0 4922 dmeq0 4923 cotr 5027 intirr 5030 dffun3 5121 dffun4 5122 dffun5 5123 dffun6f 5124 dffun7 5134 funopab 5140 funcnv2 5156 funcnv 5157 fun11 5160 fununi 5161 funcnvuni 5162 fnres 5200 fnopabg 5206 dff13 5472 fvfullfunlem1 5862 clos1induct 5881 dfnnc3 5886 frds 5936 enmap2lem4 6067 enmap1lem4 6073 ncssfin 6152 spacind 6288 |
Copyright terms: Public domain | W3C validator |