NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  an42s GIF version

Theorem an42s 800
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((φ ψ) (χ θ)) → τ)
Assertion
Ref Expression
an42s (((φ χ) (θ ψ)) → τ)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((φ ψ) (χ θ)) → τ)
21an4s 799 . 2 (((φ χ) (ψ θ)) → τ)
32ancom2s 777 1 (((φ χ) (θ ψ)) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator