| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > an42s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an41r3s.1 | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) |
| Ref | Expression |
|---|---|
| an42s | ⊢ (((φ ∧ χ) ∧ (θ ∧ ψ)) → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an41r3s.1 | . . 3 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) | |
| 2 | 1 | an4s 799 | . 2 ⊢ (((φ ∧ χ) ∧ (ψ ∧ θ)) → τ) |
| 3 | 2 | ancom2s 777 | 1 ⊢ (((φ ∧ χ) ∧ (θ ∧ ψ)) → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |