NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ancom2s GIF version

Theorem ancom2s 777
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1 ((φ (ψ χ)) → θ)
Assertion
Ref Expression
ancom2s ((φ (χ ψ)) → θ)

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 436 . 2 ((χ ψ) → (ψ χ))
2 an12s.1 . 2 ((φ (ψ χ)) → θ)
31, 2sylan2 460 1 ((φ (χ ψ)) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  an42s  800  xpexr2  5111  f1elima  5475
  Copyright terms: Public domain W3C validator