New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ancom2s | GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((φ ∧ (χ ∧ ψ)) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 436 | . 2 ⊢ ((χ ∧ ψ) → (ψ ∧ χ)) | |
2 | an12s.1 | . 2 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
3 | 1, 2 | sylan2 460 | 1 ⊢ ((φ ∧ (χ ∧ ψ)) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: an42s 800 xpexr2 5111 f1elima 5475 |
Copyright terms: Public domain | W3C validator |