NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anandi GIF version

Theorem anandi 801
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.)
Assertion
Ref Expression
anandi ((φ (ψ χ)) ↔ ((φ ψ) (φ χ)))

Proof of Theorem anandi
StepHypRef Expression
1 anidm 625 . . 3 ((φ φ) ↔ φ)
21anbi1i 676 . 2 (((φ φ) (ψ χ)) ↔ (φ (ψ χ)))
3 an4 797 . 2 (((φ φ) (ψ χ)) ↔ ((φ ψ) (φ χ)))
42, 3bitr3i 242 1 ((φ (ψ χ)) ↔ ((φ ψ) (φ χ)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  inrab  3528  uniin  3912  fin  5247  inpreima  5410  fununiq  5518  ndmovdistr  5620  trtxp  5782
  Copyright terms: Public domain W3C validator