NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anabsi6 GIF version

Theorem anabsi6 791
Description: Absorption of antecedent into conjunction. (Contributed by NM, 14-Aug-2000.)
Hypothesis
Ref Expression
anabsi6.1 (φ → ((ψ φ) → χ))
Assertion
Ref Expression
anabsi6 ((φ ψ) → χ)

Proof of Theorem anabsi6
StepHypRef Expression
1 anabsi6.1 . . 3 (φ → ((ψ φ) → χ))
21ancomsd 440 . 2 (φ → ((φ ψ) → χ))
32anabsi5 790 1 ((φ ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  anabsi7  792
  Copyright terms: Public domain W3C validator