NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anabsi5 GIF version

Theorem anabsi5 790
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (φ → ((φ ψ) → χ))
Assertion
Ref Expression
anabsi5 ((φ ψ) → χ)

Proof of Theorem anabsi5
StepHypRef Expression
1 anabsi5.1 . . 3 (φ → ((φ ψ) → χ))
21imp 418 . 2 ((φ (φ ψ)) → χ)
32anabss5 789 1 ((φ ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  anabsi6  791  anabsi8  793  3anidm12  1239  rspce  2951
  Copyright terms: Public domain W3C validator