| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > anabsi5 | GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi5.1 | ⊢ (φ → ((φ ∧ ψ) → χ)) |
| Ref | Expression |
|---|---|
| anabsi5 | ⊢ ((φ ∧ ψ) → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi5.1 | . . 3 ⊢ (φ → ((φ ∧ ψ) → χ)) | |
| 2 | 1 | imp 418 | . 2 ⊢ ((φ ∧ (φ ∧ ψ)) → χ) |
| 3 | 2 | anabss5 789 | 1 ⊢ ((φ ∧ ψ) → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: anabsi6 791 anabsi8 793 3anidm12 1239 rspce 2951 |
| Copyright terms: Public domain | W3C validator |