NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ancomsd GIF version

Theorem ancomsd 440
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.)
Hypothesis
Ref Expression
ancomsd.1 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
ancomsd (φ → ((χ ψ) → θ))

Proof of Theorem ancomsd
StepHypRef Expression
1 ancom 437 . 2 ((χ ψ) ↔ (ψ χ))
2 ancomsd.1 . 2 (φ → ((ψ χ) → θ))
31, 2syl5bi 208 1 (φ → ((χ ψ) → θ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sylan2d  468  mpand  656  anabsi6  791  ralcom2  2776  enprmaplem3  6079
  Copyright terms: Public domain W3C validator