New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ancomsd | GIF version |
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ancomsd.1 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
Ref | Expression |
---|---|
ancomsd | ⊢ (φ → ((χ ∧ ψ) → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . 2 ⊢ ((χ ∧ ψ) ↔ (ψ ∧ χ)) | |
2 | ancomsd.1 | . 2 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
3 | 1, 2 | syl5bi 208 | 1 ⊢ (φ → ((χ ∧ ψ) → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylan2d 468 mpand 656 anabsi6 791 ralcom2 2776 enprmaplem3 6079 |
Copyright terms: Public domain | W3C validator |