NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anabsi8 GIF version

Theorem anabsi8 793
Description: Absorption of antecedent into conjunction. (Contributed by NM, 26-Sep-1999.)
Hypothesis
Ref Expression
anabsi8.1 (ψ → ((ψ φ) → χ))
Assertion
Ref Expression
anabsi8 ((φ ψ) → χ)

Proof of Theorem anabsi8
StepHypRef Expression
1 anabsi8.1 . . 3 (ψ → ((ψ φ) → χ))
21anabsi5 790 . 2 ((ψ φ) → χ)
32ancoms 439 1 ((φ ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator