Detailed syntax breakdown of Axiom ax-1c
| Step | Hyp | Ref
 | Expression | 
| 1 |   | vy | 
. . . . 5
setvar y | 
| 2 |   | vx | 
. . . . 5
setvar x | 
| 3 | 1, 2 | wel 1711 | 
. . . 4
wff y
∈ x | 
| 4 |   | vw | 
. . . . . . . 8
setvar w | 
| 5 | 4, 1 | wel 1711 | 
. . . . . . 7
wff w
∈ y | 
| 6 |   | vz | 
. . . . . . . 8
setvar z | 
| 7 | 4, 6 | weq 1643 | 
. . . . . . 7
wff w =
z | 
| 8 | 5, 7 | wb 176 | 
. . . . . 6
wff (w
∈ y
↔ w = z) | 
| 9 | 8, 4 | wal 1540 | 
. . . . 5
wff ∀w(w ∈ y ↔ w =
z) | 
| 10 | 9, 6 | wex 1541 | 
. . . 4
wff ∃z∀w(w ∈ y ↔ w =
z) | 
| 11 | 3, 10 | wb 176 | 
. . 3
wff (y
∈ x
↔ ∃z∀w(w ∈ y ↔
w = z)) | 
| 12 | 11, 1 | wal 1540 | 
. 2
wff ∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w =
z)) | 
| 13 | 12, 2 | wex 1541 | 
1
wff ∃x∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w =
z)) |