New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 1cex | GIF version |
Description: Cardinal one is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
1cex | ⊢ 1c ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1c 4082 | . 2 ⊢ ∃x∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z)) | |
2 | isset 2864 | . . 3 ⊢ (1c ∈ V ↔ ∃x x = 1c) | |
3 | df-1c 4137 | . . . . . . 7 ⊢ 1c = {y ∣ ∃z y = {z}} | |
4 | 3 | eqeq2i 2363 | . . . . . 6 ⊢ (x = 1c ↔ x = {y ∣ ∃z y = {z}}) |
5 | abeq2 2459 | . . . . . 6 ⊢ (x = {y ∣ ∃z y = {z}} ↔ ∀y(y ∈ x ↔ ∃z y = {z})) | |
6 | 4, 5 | bitri 240 | . . . . 5 ⊢ (x = 1c ↔ ∀y(y ∈ x ↔ ∃z y = {z})) |
7 | dfcleq 2347 | . . . . . . . . 9 ⊢ (y = {z} ↔ ∀w(w ∈ y ↔ w ∈ {z})) | |
8 | df-sn 3742 | . . . . . . . . . . . 12 ⊢ {z} = {w ∣ w = z} | |
9 | 8 | abeq2i 2461 | . . . . . . . . . . 11 ⊢ (w ∈ {z} ↔ w = z) |
10 | 9 | bibi2i 304 | . . . . . . . . . 10 ⊢ ((w ∈ y ↔ w ∈ {z}) ↔ (w ∈ y ↔ w = z)) |
11 | 10 | albii 1566 | . . . . . . . . 9 ⊢ (∀w(w ∈ y ↔ w ∈ {z}) ↔ ∀w(w ∈ y ↔ w = z)) |
12 | 7, 11 | bitri 240 | . . . . . . . 8 ⊢ (y = {z} ↔ ∀w(w ∈ y ↔ w = z)) |
13 | 12 | exbii 1582 | . . . . . . 7 ⊢ (∃z y = {z} ↔ ∃z∀w(w ∈ y ↔ w = z)) |
14 | 13 | bibi2i 304 | . . . . . 6 ⊢ ((y ∈ x ↔ ∃z y = {z}) ↔ (y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
15 | 14 | albii 1566 | . . . . 5 ⊢ (∀y(y ∈ x ↔ ∃z y = {z}) ↔ ∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
16 | 6, 15 | bitri 240 | . . . 4 ⊢ (x = 1c ↔ ∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
17 | 16 | exbii 1582 | . . 3 ⊢ (∃x x = 1c ↔ ∃x∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
18 | 2, 17 | bitri 240 | . 2 ⊢ (1c ∈ V ↔ ∃x∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
19 | 1, 18 | mpbir 200 | 1 ⊢ 1c ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 {csn 3738 1cc1c 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-1c 4082 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-sn 3742 df-1c 4137 |
This theorem is referenced by: sikexg 4297 imakexg 4300 ins2kexg 4306 ins3kexg 4307 imagekexg 4312 pwexg 4329 addcexlem 4383 nncex 4397 peano2 4404 findsd 4411 nnc0suc 4413 nnsucelrlem1 4425 nndisjeq 4430 ltfinp1 4463 ltfinex 4465 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfinrelkex 4488 tfin1c 4500 evenfinex 4504 oddfinex 4505 sucevenodd 4511 sucoddeven 4512 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelkex 4526 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 1cvsfin 4543 vfin1cltv 4548 vfinncvntnn 4549 vfinspsslem1 4551 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 phi11lem1 4596 phialllem1 4617 setconslem5 4736 1stex 4740 swapex 4743 imageexg 5801 mptexlem 5811 mpt2exlem 5812 composeex 5821 disjex 5824 addcfnex 5825 funsex 5829 crossex 5851 pw1fnex 5853 domfnex 5871 ranfnex 5872 dfnnc3 5886 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 qsexg 5983 enprmaplem1 6077 mucex 6134 ovcelem1 6172 ceex 6175 ce2ncpw11c 6195 nc0le1 6217 tcnc1c 6228 ce0lenc1 6240 tlenc1c 6241 tcfnex 6245 csucex 6260 nnltp1clem1 6262 nmembers1lem1 6269 nncdiv3lem2 6277 nnc3n3p1 6279 nchoicelem8 6297 nchoicelem9 6298 nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |