New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 1cex | GIF version |
Description: Cardinal one is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
1cex | ⊢ 1c ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1c 4081 | . 2 ⊢ ∃x∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z)) | |
2 | isset 2863 | . . 3 ⊢ (1c ∈ V ↔ ∃x x = 1c) | |
3 | df-1c 4136 | . . . . . . 7 ⊢ 1c = {y ∣ ∃z y = {z}} | |
4 | 3 | eqeq2i 2363 | . . . . . 6 ⊢ (x = 1c ↔ x = {y ∣ ∃z y = {z}}) |
5 | abeq2 2458 | . . . . . 6 ⊢ (x = {y ∣ ∃z y = {z}} ↔ ∀y(y ∈ x ↔ ∃z y = {z})) | |
6 | 4, 5 | bitri 240 | . . . . 5 ⊢ (x = 1c ↔ ∀y(y ∈ x ↔ ∃z y = {z})) |
7 | dfcleq 2347 | . . . . . . . . 9 ⊢ (y = {z} ↔ ∀w(w ∈ y ↔ w ∈ {z})) | |
8 | df-sn 3741 | . . . . . . . . . . . 12 ⊢ {z} = {w ∣ w = z} | |
9 | 8 | abeq2i 2460 | . . . . . . . . . . 11 ⊢ (w ∈ {z} ↔ w = z) |
10 | 9 | bibi2i 304 | . . . . . . . . . 10 ⊢ ((w ∈ y ↔ w ∈ {z}) ↔ (w ∈ y ↔ w = z)) |
11 | 10 | albii 1566 | . . . . . . . . 9 ⊢ (∀w(w ∈ y ↔ w ∈ {z}) ↔ ∀w(w ∈ y ↔ w = z)) |
12 | 7, 11 | bitri 240 | . . . . . . . 8 ⊢ (y = {z} ↔ ∀w(w ∈ y ↔ w = z)) |
13 | 12 | exbii 1582 | . . . . . . 7 ⊢ (∃z y = {z} ↔ ∃z∀w(w ∈ y ↔ w = z)) |
14 | 13 | bibi2i 304 | . . . . . 6 ⊢ ((y ∈ x ↔ ∃z y = {z}) ↔ (y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
15 | 14 | albii 1566 | . . . . 5 ⊢ (∀y(y ∈ x ↔ ∃z y = {z}) ↔ ∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
16 | 6, 15 | bitri 240 | . . . 4 ⊢ (x = 1c ↔ ∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
17 | 16 | exbii 1582 | . . 3 ⊢ (∃x x = 1c ↔ ∃x∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
18 | 2, 17 | bitri 240 | . 2 ⊢ (1c ∈ V ↔ ∃x∀y(y ∈ x ↔ ∃z∀w(w ∈ y ↔ w = z))) |
19 | 1, 18 | mpbir 200 | 1 ⊢ 1c ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2859 {csn 3737 1cc1c 4134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-1c 4081 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2861 df-sn 3741 df-1c 4136 |
This theorem is referenced by: sikexg 4296 imakexg 4299 ins2kexg 4305 ins3kexg 4306 imagekexg 4311 pwexg 4328 addcexlem 4382 nncex 4396 peano2 4403 findsd 4410 nnc0suc 4412 nnsucelrlem1 4424 nndisjeq 4429 ltfinp1 4462 ltfinex 4464 ssfin 4470 ncfinraiselem2 4480 ncfinlowerlem1 4482 tfinrelkex 4487 tfin1c 4499 evenfinex 4503 oddfinex 4504 sucevenodd 4510 sucoddeven 4511 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 srelkex 4525 sfintfinlem1 4531 tfinnnlem1 4533 spfinex 4537 1cvsfin 4542 vfin1cltv 4547 vfinncvntnn 4548 vfinspsslem1 4550 phiexg 4571 opexg 4587 proj1exg 4591 proj2exg 4592 phi11lem1 4595 phialllem1 4616 setconslem5 4735 1stex 4739 swapex 4742 imageexg 5800 mptexlem 5810 mpt2exlem 5811 composeex 5820 disjex 5823 addcfnex 5824 funsex 5828 crossex 5850 pw1fnex 5852 domfnex 5870 ranfnex 5871 dfnnc3 5885 transex 5910 refex 5911 antisymex 5912 connexex 5913 foundex 5914 extex 5915 symex 5916 qsexg 5982 enprmaplem1 6076 mucex 6133 ovcelem1 6171 ceex 6174 ce2ncpw11c 6194 nc0le1 6216 tcnc1c 6227 ce0lenc1 6239 tlenc1c 6240 tcfnex 6244 csucex 6259 nnltp1clem1 6261 nmembers1lem1 6268 nncdiv3lem2 6276 nnc3n3p1 6278 nchoicelem8 6296 nchoicelem9 6297 nchoicelem11 6299 nchoicelem16 6304 nchoicelem18 6306 dmfrec 6316 fnfreclem2 6318 fnfreclem3 6319 |
Copyright terms: Public domain | W3C validator |