Detailed syntax breakdown of Axiom ax-sset
| Step | Hyp | Ref
 | Expression | 
| 1 |   | vy | 
. . . . . . . 8
setvar y | 
| 2 | 1 | cv 1641 | 
. . . . . . 7
class y | 
| 3 |   | vz | 
. . . . . . . 8
setvar z | 
| 4 | 3 | cv 1641 | 
. . . . . . 7
class z | 
| 5 | 2, 4 | copk 4058 | 
. . . . . 6
class ⟪y, z⟫ | 
| 6 |   | vx | 
. . . . . . 7
setvar x | 
| 7 | 6 | cv 1641 | 
. . . . . 6
class x | 
| 8 | 5, 7 | wcel 1710 | 
. . . . 5
wff ⟪y, z⟫
∈ x | 
| 9 |   | vw | 
. . . . . . . 8
setvar w | 
| 10 | 9, 1 | wel 1711 | 
. . . . . . 7
wff w
∈ y | 
| 11 | 9, 3 | wel 1711 | 
. . . . . . 7
wff w
∈ z | 
| 12 | 10, 11 | wi 4 | 
. . . . . 6
wff (w
∈ y
→ w ∈ z) | 
| 13 | 12, 9 | wal 1540 | 
. . . . 5
wff ∀w(w ∈ y → w ∈ z) | 
| 14 | 8, 13 | wb 176 | 
. . . 4
wff (⟪y, z⟫
∈ x
↔ ∀w(w ∈ y →
w ∈
z)) | 
| 15 | 14, 3 | wal 1540 | 
. . 3
wff ∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) | 
| 16 | 15, 1 | wal 1540 | 
. 2
wff ∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) | 
| 17 | 16, 6 | wex 1541 | 
1
wff ∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) |