Step | Hyp | Ref
| Expression |
1 | | vy |
. . . . . . . 8
setvar y |
2 | 1 | cv 1641 |
. . . . . . 7
class y |
3 | | vz |
. . . . . . . 8
setvar z |
4 | 3 | cv 1641 |
. . . . . . 7
class z |
5 | 2, 4 | copk 4058 |
. . . . . 6
class ⟪y, z⟫ |
6 | | vx |
. . . . . . 7
setvar x |
7 | 6 | cv 1641 |
. . . . . 6
class x |
8 | 5, 7 | wcel 1710 |
. . . . 5
wff ⟪y, z⟫
∈ x |
9 | | vw |
. . . . . . . 8
setvar w |
10 | 9, 1 | wel 1711 |
. . . . . . 7
wff w
∈ y |
11 | 9, 3 | wel 1711 |
. . . . . . 7
wff w
∈ z |
12 | 10, 11 | wi 4 |
. . . . . 6
wff (w
∈ y
→ w ∈ z) |
13 | 12, 9 | wal 1540 |
. . . . 5
wff ∀w(w ∈ y → w ∈ z) |
14 | 8, 13 | wb 176 |
. . . 4
wff (⟪y, z⟫
∈ x
↔ ∀w(w ∈ y →
w ∈
z)) |
15 | 14, 3 | wal 1540 |
. . 3
wff ∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) |
16 | 15, 1 | wal 1540 |
. 2
wff ∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) |
17 | 16, 6 | wex 1541 |
1
wff ∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) |