Proof of Theorem axcnvprim
Step | Hyp | Ref
| Expression |
1 | | ax-cnv 4081 |
. 2
⊢ ∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) |
2 | | df-clel 2349 |
. . . . . 6
⊢ (⟪z, w⟫
∈ y
↔ ∃a(a =
⟪z, w⟫ ∧
a ∈
y)) |
3 | | axprimlem2 4090 |
. . . . . . . 8
⊢ (a = ⟪z,
w⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z) ∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w))))) |
4 | 3 | anbi1i 676 |
. . . . . . 7
⊢ ((a = ⟪z,
w⟫ ∧ a ∈ y) ↔
(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = z)
∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w)))) ∧ a ∈ y)) |
5 | 4 | exbii 1582 |
. . . . . 6
⊢ (∃a(a = ⟪z,
w⟫ ∧ a ∈ y) ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z) ∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w)))) ∧ a ∈ y)) |
6 | 2, 5 | bitri 240 |
. . . . 5
⊢ (⟪z, w⟫
∈ y
↔ ∃a(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = z)
∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w)))) ∧ a ∈ y)) |
7 | | df-clel 2349 |
. . . . . 6
⊢ (⟪w, z⟫
∈ x
↔ ∃e(e =
⟪w, z⟫ ∧
e ∈
x)) |
8 | | axprimlem2 4090 |
. . . . . . . 8
⊢ (e = ⟪w,
z⟫ ↔ ∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w) ∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z))))) |
9 | 8 | anbi1i 676 |
. . . . . . 7
⊢ ((e = ⟪w,
z⟫ ∧ e ∈ x) ↔
(∀f(f ∈ e ↔
(∀g(g ∈ f ↔
g = w)
∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z)))) ∧ e ∈ x)) |
10 | 9 | exbii 1582 |
. . . . . 6
⊢ (∃e(e = ⟪w,
z⟫ ∧ e ∈ x) ↔
∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w) ∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z)))) ∧ e ∈ x)) |
11 | 7, 10 | bitri 240 |
. . . . 5
⊢ (⟪w, z⟫
∈ x
↔ ∃e(∀f(f ∈ e ↔
(∀g(g ∈ f ↔
g = w)
∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z)))) ∧ e ∈ x)) |
12 | 6, 11 | bibi12i 306 |
. . . 4
⊢ ((⟪z, w⟫
∈ y
↔ ⟪w, z⟫ ∈
x) ↔ (∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z) ∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w) ∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z)))) ∧ e ∈ x))) |
13 | 12 | 2albii 1567 |
. . 3
⊢ (∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) ↔ ∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z) ∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w) ∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z)))) ∧ e ∈ x))) |
14 | 13 | exbii 1582 |
. 2
⊢ (∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) ↔ ∃y∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z) ∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w) ∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z)))) ∧ e ∈ x))) |
15 | 1, 14 | mpbi 199 |
1
⊢ ∃y∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z) ∨ ∀d(d ∈ b ↔ (d =
z ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w) ∨ ∀h(h ∈ f ↔ (h =
w ∨
h = z)))) ∧ e ∈ x)) |