Proof of Theorem axcnvprim
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-cnv 4081 | 
. 2
⊢ ∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) | 
| 2 |   | df-clel 2349 | 
. . . . . 6
⊢ (⟪z, w⟫
∈ y
↔ ∃a(a =
⟪z, w⟫ ∧
a ∈
y)) | 
| 3 |   | axprimlem2 4090 | 
. . . . . . . 8
⊢ (a = ⟪z,
w⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z)  ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w))))) | 
| 4 | 3 | anbi1i 676 | 
. . . . . . 7
⊢ ((a = ⟪z,
w⟫ ∧ a ∈ y) ↔
(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = z)
 ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w)))) ∧ a ∈ y)) | 
| 5 | 4 | exbii 1582 | 
. . . . . 6
⊢ (∃a(a = ⟪z,
w⟫ ∧ a ∈ y) ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z)  ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w)))) ∧ a ∈ y)) | 
| 6 | 2, 5 | bitri 240 | 
. . . . 5
⊢ (⟪z, w⟫
∈ y
↔ ∃a(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = z)
 ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w)))) ∧ a ∈ y)) | 
| 7 |   | df-clel 2349 | 
. . . . . 6
⊢ (⟪w, z⟫
∈ x
↔ ∃e(e =
⟪w, z⟫ ∧
e ∈
x)) | 
| 8 |   | axprimlem2 4090 | 
. . . . . . . 8
⊢ (e = ⟪w,
z⟫ ↔ ∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w)  ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z))))) | 
| 9 | 8 | anbi1i 676 | 
. . . . . . 7
⊢ ((e = ⟪w,
z⟫ ∧ e ∈ x) ↔
(∀f(f ∈ e ↔
(∀g(g ∈ f ↔
g = w)
 ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z)))) ∧ e ∈ x)) | 
| 10 | 9 | exbii 1582 | 
. . . . . 6
⊢ (∃e(e = ⟪w,
z⟫ ∧ e ∈ x) ↔
∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w)  ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z)))) ∧ e ∈ x)) | 
| 11 | 7, 10 | bitri 240 | 
. . . . 5
⊢ (⟪w, z⟫
∈ x
↔ ∃e(∀f(f ∈ e ↔
(∀g(g ∈ f ↔
g = w)
 ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z)))) ∧ e ∈ x)) | 
| 12 | 6, 11 | bibi12i 306 | 
. . . 4
⊢ ((⟪z, w⟫
∈ y
↔ ⟪w, z⟫ ∈
x) ↔ (∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z)  ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w)  ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z)))) ∧ e ∈ x))) | 
| 13 | 12 | 2albii 1567 | 
. . 3
⊢ (∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) ↔ ∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z)  ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w)  ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z)))) ∧ e ∈ x))) | 
| 14 | 13 | exbii 1582 | 
. 2
⊢ (∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) ↔ ∃y∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z)  ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w)  ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z)))) ∧ e ∈ x))) | 
| 15 | 1, 14 | mpbi 199 | 
1
⊢ ∃y∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
z)  ∨ ∀d(d ∈ b ↔ (d =
z  ∨
d = w)))) ∧ a ∈ y) ↔ ∃e(∀f(f ∈ e ↔ (∀g(g ∈ f ↔ g =
w)  ∨ ∀h(h ∈ f ↔ (h =
w  ∨
h = z)))) ∧ e ∈ x)) |