Detailed syntax breakdown of Axiom ax-ins2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | vz | 
. . . . . . . . . . 11
setvar z | 
| 2 | 1 | cv 1641 | 
. . . . . . . . . 10
class z | 
| 3 | 2 | csn 3738 | 
. . . . . . . . 9
class {z} | 
| 4 | 3 | csn 3738 | 
. . . . . . . 8
class {{z}} | 
| 5 |   | vw | 
. . . . . . . . . 10
setvar w | 
| 6 | 5 | cv 1641 | 
. . . . . . . . 9
class w | 
| 7 |   | vt | 
. . . . . . . . . 10
setvar t | 
| 8 | 7 | cv 1641 | 
. . . . . . . . 9
class t | 
| 9 | 6, 8 | copk 4058 | 
. . . . . . . 8
class ⟪w, t⟫ | 
| 10 | 4, 9 | copk 4058 | 
. . . . . . 7
class ⟪{{z}}, ⟪w,
t⟫⟫ | 
| 11 |   | vy | 
. . . . . . . 8
setvar y | 
| 12 | 11 | cv 1641 | 
. . . . . . 7
class y | 
| 13 | 10, 12 | wcel 1710 | 
. . . . . 6
wff ⟪{{z}}, ⟪w,
t⟫⟫ ∈ y | 
| 14 | 2, 8 | copk 4058 | 
. . . . . . 7
class ⟪z, t⟫ | 
| 15 |   | vx | 
. . . . . . . 8
setvar x | 
| 16 | 15 | cv 1641 | 
. . . . . . 7
class x | 
| 17 | 14, 16 | wcel 1710 | 
. . . . . 6
wff ⟪z, t⟫
∈ x | 
| 18 | 13, 17 | wb 176 | 
. . . . 5
wff (⟪{{z}}, ⟪w,
t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) | 
| 19 | 18, 7 | wal 1540 | 
. . . 4
wff ∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) | 
| 20 | 19, 5 | wal 1540 | 
. . 3
wff ∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) | 
| 21 | 20, 1 | wal 1540 | 
. 2
wff ∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) | 
| 22 | 21, 11 | wex 1541 | 
1
wff ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) |