Detailed syntax breakdown of Axiom ax-si
Step | Hyp | Ref
| Expression |
1 | | vz |
. . . . . . . . 9
setvar z |
2 | 1 | cv 1641 |
. . . . . . . 8
class z |
3 | 2 | csn 3738 |
. . . . . . 7
class {z} |
4 | | vw |
. . . . . . . . 9
setvar w |
5 | 4 | cv 1641 |
. . . . . . . 8
class w |
6 | 5 | csn 3738 |
. . . . . . 7
class {w} |
7 | 3, 6 | copk 4058 |
. . . . . 6
class ⟪{z}, {w}⟫ |
8 | | vy |
. . . . . . 7
setvar y |
9 | 8 | cv 1641 |
. . . . . 6
class y |
10 | 7, 9 | wcel 1710 |
. . . . 5
wff ⟪{z}, {w}⟫
∈ y |
11 | 2, 5 | copk 4058 |
. . . . . 6
class ⟪z, w⟫ |
12 | | vx |
. . . . . . 7
setvar x |
13 | 12 | cv 1641 |
. . . . . 6
class x |
14 | 11, 13 | wcel 1710 |
. . . . 5
wff ⟪z, w⟫
∈ x |
15 | 10, 14 | wb 176 |
. . . 4
wff (⟪{z}, {w}⟫
∈ y
↔ ⟪z, w⟫ ∈
x) |
16 | 15, 4 | wal 1540 |
. . 3
wff ∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
17 | 16, 1 | wal 1540 |
. 2
wff ∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
18 | 17, 8 | wex 1541 |
1
wff ∃y∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |