Detailed syntax breakdown of Axiom ax-si
| Step | Hyp | Ref
 | Expression | 
| 1 |   | vz | 
. . . . . . . . 9
setvar z | 
| 2 | 1 | cv 1641 | 
. . . . . . . 8
class z | 
| 3 | 2 | csn 3738 | 
. . . . . . 7
class {z} | 
| 4 |   | vw | 
. . . . . . . . 9
setvar w | 
| 5 | 4 | cv 1641 | 
. . . . . . . 8
class w | 
| 6 | 5 | csn 3738 | 
. . . . . . 7
class {w} | 
| 7 | 3, 6 | copk 4058 | 
. . . . . 6
class ⟪{z}, {w}⟫ | 
| 8 |   | vy | 
. . . . . . 7
setvar y | 
| 9 | 8 | cv 1641 | 
. . . . . 6
class y | 
| 10 | 7, 9 | wcel 1710 | 
. . . . 5
wff ⟪{z}, {w}⟫
∈ y | 
| 11 | 2, 5 | copk 4058 | 
. . . . . 6
class ⟪z, w⟫ | 
| 12 |   | vx | 
. . . . . . 7
setvar x | 
| 13 | 12 | cv 1641 | 
. . . . . 6
class x | 
| 14 | 11, 13 | wcel 1710 | 
. . . . 5
wff ⟪z, w⟫
∈ x | 
| 15 | 10, 14 | wb 176 | 
. . . 4
wff (⟪{z}, {w}⟫
∈ y
↔ ⟪z, w⟫ ∈
x) | 
| 16 | 15, 4 | wal 1540 | 
. . 3
wff ∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) | 
| 17 | 16, 1 | wal 1540 | 
. 2
wff ∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) | 
| 18 | 17, 8 | wex 1541 | 
1
wff ∃y∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |