Proof of Theorem axins2prim
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-ins2 4085 | 
. 2
⊢ ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) | 
| 2 |   | df-clel 2349 | 
. . . . . . 7
⊢ (⟪{{z}}, ⟪w,
t⟫⟫ ∈ y ↔
∃a(a =
⟪{{z}}, ⟪w, t⟫⟫ ∧
a ∈
y)) | 
| 3 |   | axprimlem2 4090 | 
. . . . . . . . . 10
⊢ (a = ⟪{{z}}, ⟪w,
t⟫⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
{{z}})  ∨
∀f(f ∈ b ↔
(f = {{z}}  ∨ f = ⟪w,
t⟫))))) | 
| 4 |   | axprimlem1 4089 | 
. . . . . . . . . . . . . . . 16
⊢ (c = {{z}} ↔
∀d(d ∈ c ↔
d = {z})) | 
| 5 |   | axprimlem1 4089 | 
. . . . . . . . . . . . . . . . . 18
⊢ (d = {z} ↔
∀e(e ∈ d ↔
e = z)) | 
| 6 | 5 | bibi2i 304 | 
. . . . . . . . . . . . . . . . 17
⊢ ((d ∈ c ↔ d =
{z}) ↔ (d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) | 
| 7 | 6 | albii 1566 | 
. . . . . . . . . . . . . . . 16
⊢ (∀d(d ∈ c ↔ d =
{z}) ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) | 
| 8 | 4, 7 | bitri 240 | 
. . . . . . . . . . . . . . 15
⊢ (c = {{z}} ↔
∀d(d ∈ c ↔
∀e(e ∈ d ↔
e = z))) | 
| 9 | 8 | bibi2i 304 | 
. . . . . . . . . . . . . 14
⊢ ((c ∈ b ↔ c =
{{z}}) ↔ (c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))) | 
| 10 | 9 | albii 1566 | 
. . . . . . . . . . . . 13
⊢ (∀c(c ∈ b ↔ c =
{{z}}) ↔ ∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))) | 
| 11 |   | axprimlem1 4089 | 
. . . . . . . . . . . . . . . . 17
⊢ (f = {{z}} ↔
∀g(g ∈ f ↔
g = {z})) | 
| 12 |   | axprimlem1 4089 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (g = {z} ↔
∀e(e ∈ g ↔
e = z)) | 
| 13 | 12 | bibi2i 304 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((g ∈ f ↔ g =
{z}) ↔ (g ∈ f ↔ ∀e(e ∈ g ↔ e =
z))) | 
| 14 | 13 | albii 1566 | 
. . . . . . . . . . . . . . . . 17
⊢ (∀g(g ∈ f ↔ g =
{z}) ↔ ∀g(g ∈ f ↔ ∀e(e ∈ g ↔ e =
z))) | 
| 15 | 11, 14 | bitri 240 | 
. . . . . . . . . . . . . . . 16
⊢ (f = {{z}} ↔
∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))) | 
| 16 |   | axprimlem2 4090 | 
. . . . . . . . . . . . . . . 16
⊢ (f = ⟪w,
t⟫ ↔ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t))))) | 
| 17 | 15, 16 | orbi12i 507 | 
. . . . . . . . . . . . . . 15
⊢ ((f = {{z}}  ∨ f =
⟪w, t⟫) ↔ (∀g(g ∈ f ↔ ∀e(e ∈ g ↔ e =
z))  ∨
∀h(h ∈ f ↔
(∀i(i ∈ h ↔
i = w)
 ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))) | 
| 18 | 17 | bibi2i 304 | 
. . . . . . . . . . . . . 14
⊢ ((f ∈ b ↔ (f =
{{z}}  ∨
f = ⟪w, t⟫))
↔ (f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t))))))) | 
| 19 | 18 | albii 1566 | 
. . . . . . . . . . . . 13
⊢ (∀f(f ∈ b ↔ (f =
{{z}}  ∨
f = ⟪w, t⟫))
↔ ∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t))))))) | 
| 20 | 10, 19 | orbi12i 507 | 
. . . . . . . . . . . 12
⊢ ((∀c(c ∈ b ↔ c =
{{z}})  ∨
∀f(f ∈ b ↔
(f = {{z}}  ∨ f = ⟪w,
t⟫))) ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) | 
| 21 | 20 | bibi2i 304 | 
. . . . . . . . . . 11
⊢ ((b ∈ a ↔ (∀c(c ∈ b ↔ c =
{{z}})  ∨
∀f(f ∈ b ↔
(f = {{z}}  ∨ f = ⟪w,
t⟫)))) ↔ (b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t))))))))) | 
| 22 | 21 | albii 1566 | 
. . . . . . . . . 10
⊢ (∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
{{z}})  ∨
∀f(f ∈ b ↔
(f = {{z}}  ∨ f = ⟪w,
t⟫)))) ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t))))))))) | 
| 23 | 3, 22 | bitri 240 | 
. . . . . . . . 9
⊢ (a = ⟪{{z}}, ⟪w,
t⟫⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t))))))))) | 
| 24 | 23 | anbi1i 676 | 
. . . . . . . 8
⊢ ((a = ⟪{{z}}, ⟪w,
t⟫⟫ ∧ a ∈ y) ↔
(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
∀d(d ∈ c ↔
∀e(e ∈ d ↔
e = z)))  ∨ ∀f(f ∈ b ↔ (∀g(g ∈ f ↔ ∀e(e ∈ g ↔ e =
z))  ∨
∀h(h ∈ f ↔
(∀i(i ∈ h ↔
i = w)
 ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y)) | 
| 25 | 24 | exbii 1582 | 
. . . . . . 7
⊢ (∃a(a = ⟪{{z}}, ⟪w,
t⟫⟫ ∧ a ∈ y) ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y)) | 
| 26 | 2, 25 | bitri 240 | 
. . . . . 6
⊢ (⟪{{z}}, ⟪w,
t⟫⟫ ∈ y ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y)) | 
| 27 |   | df-clel 2349 | 
. . . . . . 7
⊢ (⟪z, t⟫
∈ x
↔ ∃k(k =
⟪z, t⟫ ∧
k ∈
x)) | 
| 28 |   | axprimlem2 4090 | 
. . . . . . . . 9
⊢ (k = ⟪z,
t⟫ ↔ ∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z)  ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t))))) | 
| 29 | 28 | anbi1i 676 | 
. . . . . . . 8
⊢ ((k = ⟪z,
t⟫ ∧ k ∈ x) ↔
(∀l(l ∈ k ↔
(∀m(m ∈ l ↔
m = z)
 ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x)) | 
| 30 | 29 | exbii 1582 | 
. . . . . . 7
⊢ (∃k(k = ⟪z,
t⟫ ∧ k ∈ x) ↔
∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z)  ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x)) | 
| 31 | 27, 30 | bitri 240 | 
. . . . . 6
⊢ (⟪z, t⟫
∈ x
↔ ∃k(∀l(l ∈ k ↔
(∀m(m ∈ l ↔
m = z)
 ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x)) | 
| 32 | 26, 31 | bibi12i 306 | 
. . . . 5
⊢
((⟪{{z}}, ⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) ↔ (∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z)  ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x))) | 
| 33 | 32 | albii 1566 | 
. . . 4
⊢ (∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) ↔ ∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z)  ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x))) | 
| 34 | 33 | 2albii 1567 | 
. . 3
⊢ (∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) ↔ ∀z∀w∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z)  ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x))) | 
| 35 | 34 | exbii 1582 | 
. 2
⊢ (∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, t⟫ ∈
x) ↔ ∃y∀z∀w∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z)  ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x))) | 
| 36 | 1, 35 | mpbi 199 | 
1
⊢ ∃y∀z∀w∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))  ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
 ∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w)  ∨ ∀j(j ∈ h ↔ (j =
w  ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z)  ∨ ∀n(n ∈ l ↔ (n =
z  ∨
n = t)))) ∧ k ∈ x)) |