Detailed syntax breakdown of Axiom ax-ins3
| Step | Hyp | Ref
| Expression |
| 1 | | vz |
. . . . . . . . . . 11
setvar z |
| 2 | 1 | cv 1641 |
. . . . . . . . . 10
class z |
| 3 | 2 | csn 3738 |
. . . . . . . . 9
class {z} |
| 4 | 3 | csn 3738 |
. . . . . . . 8
class {{z}} |
| 5 | | vw |
. . . . . . . . . 10
setvar w |
| 6 | 5 | cv 1641 |
. . . . . . . . 9
class w |
| 7 | | vt |
. . . . . . . . . 10
setvar t |
| 8 | 7 | cv 1641 |
. . . . . . . . 9
class t |
| 9 | 6, 8 | copk 4058 |
. . . . . . . 8
class ⟪w, t⟫ |
| 10 | 4, 9 | copk 4058 |
. . . . . . 7
class ⟪{{z}}, ⟪w,
t⟫⟫ |
| 11 | | vy |
. . . . . . . 8
setvar y |
| 12 | 11 | cv 1641 |
. . . . . . 7
class y |
| 13 | 10, 12 | wcel 1710 |
. . . . . 6
wff ⟪{{z}}, ⟪w,
t⟫⟫ ∈ y |
| 14 | 2, 6 | copk 4058 |
. . . . . . 7
class ⟪z, w⟫ |
| 15 | | vx |
. . . . . . . 8
setvar x |
| 16 | 15 | cv 1641 |
. . . . . . 7
class x |
| 17 | 14, 16 | wcel 1710 |
. . . . . 6
wff ⟪z, w⟫
∈ x |
| 18 | 13, 17 | wb 176 |
. . . . 5
wff (⟪{{z}}, ⟪w,
t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
| 19 | 18, 7 | wal 1540 |
. . . 4
wff ∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
| 20 | 19, 5 | wal 1540 |
. . 3
wff ∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
| 21 | 20, 1 | wal 1540 |
. 2
wff ∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
| 22 | 21, 11 | wex 1541 |
1
wff ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |