Proof of Theorem axins3prim
Step | Hyp | Ref
| Expression |
1 | | ax-ins3 4086 |
. 2
⊢ ∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
2 | | df-clel 2349 |
. . . . . . 7
⊢ (⟪{{z}}, ⟪w,
t⟫⟫ ∈ y ↔
∃a(a =
⟪{{z}}, ⟪w, t⟫⟫ ∧
a ∈
y)) |
3 | | axprimlem2 4090 |
. . . . . . . . . 10
⊢ (a = ⟪{{z}}, ⟪w,
t⟫⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
{{z}}) ∨
∀f(f ∈ b ↔
(f = {{z}} ∨ f = ⟪w,
t⟫))))) |
4 | | axprimlem1 4089 |
. . . . . . . . . . . . . . . 16
⊢ (c = {{z}} ↔
∀d(d ∈ c ↔
d = {z})) |
5 | | axprimlem1 4089 |
. . . . . . . . . . . . . . . . . 18
⊢ (d = {z} ↔
∀e(e ∈ d ↔
e = z)) |
6 | 5 | bibi2i 304 |
. . . . . . . . . . . . . . . . 17
⊢ ((d ∈ c ↔ d =
{z}) ↔ (d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) |
7 | 6 | albii 1566 |
. . . . . . . . . . . . . . . 16
⊢ (∀d(d ∈ c ↔ d =
{z}) ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) |
8 | 4, 7 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ (c = {{z}} ↔
∀d(d ∈ c ↔
∀e(e ∈ d ↔
e = z))) |
9 | 8 | bibi2i 304 |
. . . . . . . . . . . . . 14
⊢ ((c ∈ b ↔ c =
{{z}}) ↔ (c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))) |
10 | 9 | albii 1566 |
. . . . . . . . . . . . 13
⊢ (∀c(c ∈ b ↔ c =
{{z}}) ↔ ∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z)))) |
11 | | axprimlem1 4089 |
. . . . . . . . . . . . . . . . 17
⊢ (f = {{z}} ↔
∀g(g ∈ f ↔
g = {z})) |
12 | | axprimlem1 4089 |
. . . . . . . . . . . . . . . . . . 19
⊢ (g = {z} ↔
∀e(e ∈ g ↔
e = z)) |
13 | 12 | bibi2i 304 |
. . . . . . . . . . . . . . . . . 18
⊢ ((g ∈ f ↔ g =
{z}) ↔ (g ∈ f ↔ ∀e(e ∈ g ↔ e =
z))) |
14 | 13 | albii 1566 |
. . . . . . . . . . . . . . . . 17
⊢ (∀g(g ∈ f ↔ g =
{z}) ↔ ∀g(g ∈ f ↔ ∀e(e ∈ g ↔ e =
z))) |
15 | 11, 14 | bitri 240 |
. . . . . . . . . . . . . . . 16
⊢ (f = {{z}} ↔
∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))) |
16 | | axprimlem2 4090 |
. . . . . . . . . . . . . . . 16
⊢ (f = ⟪w,
t⟫ ↔ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t))))) |
17 | 15, 16 | orbi12i 507 |
. . . . . . . . . . . . . . 15
⊢ ((f = {{z}} ∨ f =
⟪w, t⟫) ↔ (∀g(g ∈ f ↔ ∀e(e ∈ g ↔ e =
z)) ∨
∀h(h ∈ f ↔
(∀i(i ∈ h ↔
i = w)
∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))) |
18 | 17 | bibi2i 304 |
. . . . . . . . . . . . . 14
⊢ ((f ∈ b ↔ (f =
{{z}} ∨
f = ⟪w, t⟫))
↔ (f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t))))))) |
19 | 18 | albii 1566 |
. . . . . . . . . . . . 13
⊢ (∀f(f ∈ b ↔ (f =
{{z}} ∨
f = ⟪w, t⟫))
↔ ∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t))))))) |
20 | 10, 19 | orbi12i 507 |
. . . . . . . . . . . 12
⊢ ((∀c(c ∈ b ↔ c =
{{z}}) ∨
∀f(f ∈ b ↔
(f = {{z}} ∨ f = ⟪w,
t⟫))) ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) |
21 | 20 | bibi2i 304 |
. . . . . . . . . . 11
⊢ ((b ∈ a ↔ (∀c(c ∈ b ↔ c =
{{z}}) ∨
∀f(f ∈ b ↔
(f = {{z}} ∨ f = ⟪w,
t⟫)))) ↔ (b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t))))))))) |
22 | 21 | albii 1566 |
. . . . . . . . . 10
⊢ (∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
{{z}}) ∨
∀f(f ∈ b ↔
(f = {{z}} ∨ f = ⟪w,
t⟫)))) ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t))))))))) |
23 | 3, 22 | bitri 240 |
. . . . . . . . 9
⊢ (a = ⟪{{z}}, ⟪w,
t⟫⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t))))))))) |
24 | 23 | anbi1i 676 |
. . . . . . . 8
⊢ ((a = ⟪{{z}}, ⟪w,
t⟫⟫ ∧ a ∈ y) ↔
(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
∀d(d ∈ c ↔
∀e(e ∈ d ↔
e = z))) ∨ ∀f(f ∈ b ↔ (∀g(g ∈ f ↔ ∀e(e ∈ g ↔ e =
z)) ∨
∀h(h ∈ f ↔
(∀i(i ∈ h ↔
i = w)
∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y)) |
25 | 24 | exbii 1582 |
. . . . . . 7
⊢ (∃a(a = ⟪{{z}}, ⟪w,
t⟫⟫ ∧ a ∈ y) ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y)) |
26 | 2, 25 | bitri 240 |
. . . . . 6
⊢ (⟪{{z}}, ⟪w,
t⟫⟫ ∈ y ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y)) |
27 | | df-clel 2349 |
. . . . . . 7
⊢ (⟪z, w⟫
∈ x
↔ ∃k(k =
⟪z, w⟫ ∧
k ∈
x)) |
28 | | axprimlem2 4090 |
. . . . . . . . 9
⊢ (k = ⟪z,
w⟫ ↔ ∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z) ∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w))))) |
29 | 28 | anbi1i 676 |
. . . . . . . 8
⊢ ((k = ⟪z,
w⟫ ∧ k ∈ x) ↔
(∀l(l ∈ k ↔
(∀m(m ∈ l ↔
m = z)
∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x)) |
30 | 29 | exbii 1582 |
. . . . . . 7
⊢ (∃k(k = ⟪z,
w⟫ ∧ k ∈ x) ↔
∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z) ∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x)) |
31 | 27, 30 | bitri 240 |
. . . . . 6
⊢ (⟪z, w⟫
∈ x
↔ ∃k(∀l(l ∈ k ↔
(∀m(m ∈ l ↔
m = z)
∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x)) |
32 | 26, 31 | bibi12i 306 |
. . . . 5
⊢
((⟪{{z}}, ⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) ↔ (∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z) ∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x))) |
33 | 32 | albii 1566 |
. . . 4
⊢ (∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) ↔ ∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z) ∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x))) |
34 | 33 | 2albii 1567 |
. . 3
⊢ (∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) ↔ ∀z∀w∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z) ∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x))) |
35 | 34 | exbii 1582 |
. 2
⊢ (∃y∀z∀w∀t(⟪{{z}},
⟪w, t⟫⟫ ∈ y ↔
⟪z, w⟫ ∈
x) ↔ ∃y∀z∀w∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z) ∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x))) |
36 | 1, 35 | mpbi 199 |
1
⊢ ∃y∀z∀w∀t(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ ∀e(e ∈ d ↔ e =
z))) ∨
∀f(f ∈ b ↔
(∀g(g ∈ f ↔
∀e(e ∈ g ↔
e = z))
∨ ∀h(h ∈ f ↔ (∀i(i ∈ h ↔ i =
w) ∨ ∀j(j ∈ h ↔ (j =
w ∨
j = t)))))))) ∧
a ∈
y) ↔ ∃k(∀l(l ∈ k ↔ (∀m(m ∈ l ↔ m =
z) ∨ ∀n(n ∈ l ↔ (n =
z ∨
n = w)))) ∧ k ∈ x)) |