![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ax-typlower | GIF version |
Description: The type lowering axiom. This axiom eventually sets up both the existence of the sum set and the existence of the range of a relationship. Axiom P6 of [Hailperin] p. 10. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
ax-typlower | ⊢ ∃y∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vz | . . . . 5 setvar z | |
2 | vy | . . . . 5 setvar y | |
3 | 1, 2 | wel 1711 | . . . 4 wff z ∈ y |
4 | vw | . . . . . . . 8 setvar w | |
5 | 4 | cv 1641 | . . . . . . 7 class w |
6 | 1 | cv 1641 | . . . . . . . 8 class z |
7 | 6 | csn 3738 | . . . . . . 7 class {z} |
8 | 5, 7 | copk 4058 | . . . . . 6 class ⟪w, {z}⟫ |
9 | vx | . . . . . . 7 setvar x | |
10 | 9 | cv 1641 | . . . . . 6 class x |
11 | 8, 10 | wcel 1710 | . . . . 5 wff ⟪w, {z}⟫ ∈ x |
12 | 11, 4 | wal 1540 | . . . 4 wff ∀w⟪w, {z}⟫ ∈ x |
13 | 3, 12 | wb 176 | . . 3 wff (z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) |
14 | 13, 1 | wal 1540 | . 2 wff ∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) |
15 | 14, 2 | wex 1541 | 1 wff ∃y∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) |
Colors of variables: wff setvar class |
This axiom is referenced by: axtyplowerprim 4095 p6exg 4291 |
Copyright terms: Public domain | W3C validator |