Detailed syntax breakdown of Axiom ax-typlower
| Step | Hyp | Ref
| Expression |
| 1 | | vz |
. . . . 5
setvar z |
| 2 | | vy |
. . . . 5
setvar y |
| 3 | 1, 2 | wel 1711 |
. . . 4
wff z
∈ y |
| 4 | | vw |
. . . . . . . 8
setvar w |
| 5 | 4 | cv 1641 |
. . . . . . 7
class w |
| 6 | 1 | cv 1641 |
. . . . . . . 8
class z |
| 7 | 6 | csn 3738 |
. . . . . . 7
class {z} |
| 8 | 5, 7 | copk 4058 |
. . . . . 6
class ⟪w, {z}⟫ |
| 9 | | vx |
. . . . . . 7
setvar x |
| 10 | 9 | cv 1641 |
. . . . . 6
class x |
| 11 | 8, 10 | wcel 1710 |
. . . . 5
wff ⟪w, {z}⟫
∈ x |
| 12 | 11, 4 | wal 1540 |
. . . 4
wff ∀w⟪w,
{z}⟫ ∈ x |
| 13 | 3, 12 | wb 176 |
. . 3
wff (z
∈ y
↔ ∀w⟪w,
{z}⟫ ∈ x) |
| 14 | 13, 1 | wal 1540 |
. 2
wff ∀z(z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) |
| 15 | 14, 2 | wex 1541 |
1
wff ∃y∀z(z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) |