Detailed syntax breakdown of Axiom ax-typlower
| Step | Hyp | Ref
 | Expression | 
| 1 |   | vz | 
. . . . 5
setvar z | 
| 2 |   | vy | 
. . . . 5
setvar y | 
| 3 | 1, 2 | wel 1711 | 
. . . 4
wff z
∈ y | 
| 4 |   | vw | 
. . . . . . . 8
setvar w | 
| 5 | 4 | cv 1641 | 
. . . . . . 7
class w | 
| 6 | 1 | cv 1641 | 
. . . . . . . 8
class z | 
| 7 | 6 | csn 3738 | 
. . . . . . 7
class {z} | 
| 8 | 5, 7 | copk 4058 | 
. . . . . 6
class ⟪w, {z}⟫ | 
| 9 |   | vx | 
. . . . . . 7
setvar x | 
| 10 | 9 | cv 1641 | 
. . . . . 6
class x | 
| 11 | 8, 10 | wcel 1710 | 
. . . . 5
wff ⟪w, {z}⟫
∈ x | 
| 12 | 11, 4 | wal 1540 | 
. . . 4
wff ∀w⟪w,
{z}⟫ ∈ x | 
| 13 | 3, 12 | wb 176 | 
. . 3
wff (z
∈ y
↔ ∀w⟪w,
{z}⟫ ∈ x) | 
| 14 | 13, 1 | wal 1540 | 
. 2
wff ∀z(z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) | 
| 15 | 14, 2 | wex 1541 | 
1
wff ∃y∀z(z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) |