| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ax-sn | GIF version | ||
| Description: The singleton axiom. This axiom sets up the existence of a singleton set. This appears to have been an oversight on Hailperin's part, as it is needed to prove the properties of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| ax-sn | ⊢ ∃y∀z(z ∈ y ↔ z = x) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vz | . . . . 5 setvar z | |
| 2 | vy | . . . . 5 setvar y | |
| 3 | 1, 2 | wel 1711 | . . . 4 wff z ∈ y |
| 4 | vx | . . . . 5 setvar x | |
| 5 | 1, 4 | weq 1643 | . . . 4 wff z = x |
| 6 | 3, 5 | wb 176 | . . 3 wff (z ∈ y ↔ z = x) |
| 7 | 6, 1 | wal 1540 | . 2 wff ∀z(z ∈ y ↔ z = x) |
| 8 | 7, 2 | wex 1541 | 1 wff ∃y∀z(z ∈ y ↔ z = x) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: snex 4112 |
| Copyright terms: Public domain | W3C validator |