| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ax-sn | GIF version | ||
| Description: The singleton axiom. This axiom sets up the existence of a singleton set. This appears to have been an oversight on Hailperin's part, as it is needed to prove the properties of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| ax-sn | ⊢ ∃y∀z(z ∈ y ↔ z = x) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vz | . . . . 5 setvar z | |
| 2 | vy | . . . . 5 setvar y | |
| 3 | 1, 2 | wel 1711 | . . . 4 wff z ∈ y | 
| 4 | vx | . . . . 5 setvar x | |
| 5 | 1, 4 | weq 1643 | . . . 4 wff z = x | 
| 6 | 3, 5 | wb 176 | . . 3 wff (z ∈ y ↔ z = x) | 
| 7 | 6, 1 | wal 1540 | . 2 wff ∀z(z ∈ y ↔ z = x) | 
| 8 | 7, 2 | wex 1541 | 1 wff ∃y∀z(z ∈ y ↔ z = x) | 
| Colors of variables: wff setvar class | 
| This axiom is referenced by: snex 4112 | 
| Copyright terms: Public domain | W3C validator |