| Step | Hyp | Ref
 | Expression | 
| 1 |   | sneq 3745 | 
. . . 4
⊢ (x = A →
{x} = {A}) | 
| 2 | 1 | eleq1d 2419 | 
. . 3
⊢ (x = A →
({x} ∈ V
↔ {A} ∈ V)) | 
| 3 |   | ax-sn 4088 | 
. . . 4
⊢ ∃y∀z(z ∈ y ↔ z =
x) | 
| 4 |   | isset 2864 | 
. . . . 5
⊢ ({x} ∈ V ↔
∃y
y = {x}) | 
| 5 |   | axprimlem1 4089 | 
. . . . . 6
⊢ (y = {x} ↔
∀z(z ∈ y ↔
z = x)) | 
| 6 | 5 | exbii 1582 | 
. . . . 5
⊢ (∃y y = {x} ↔
∃y∀z(z ∈ y ↔ z =
x)) | 
| 7 | 4, 6 | bitri 240 | 
. . . 4
⊢ ({x} ∈ V ↔
∃y∀z(z ∈ y ↔ z =
x)) | 
| 8 | 3, 7 | mpbir 200 | 
. . 3
⊢ {x} ∈
V | 
| 9 | 2, 8 | vtoclg 2915 | 
. 2
⊢ (A ∈ V →
{A} ∈
V) | 
| 10 |   | snprc 3789 | 
. . . 4
⊢ (¬ A ∈ V ↔
{A} = ∅) | 
| 11 | 10 | biimpi 186 | 
. . 3
⊢ (¬ A ∈ V →
{A} = ∅) | 
| 12 |   | 0ex 4111 | 
. . 3
⊢ ∅ ∈
V | 
| 13 | 11, 12 | syl6eqel 2441 | 
. 2
⊢ (¬ A ∈ V →
{A} ∈
V) | 
| 14 | 9, 13 | pm2.61i 156 | 
1
⊢ {A} ∈
V |