Step | Hyp | Ref
| Expression |
1 | | sneq 3745 |
. . . 4
⊢ (x = A →
{x} = {A}) |
2 | 1 | eleq1d 2419 |
. . 3
⊢ (x = A →
({x} ∈ V
↔ {A} ∈ V)) |
3 | | ax-sn 4088 |
. . . 4
⊢ ∃y∀z(z ∈ y ↔ z =
x) |
4 | | isset 2864 |
. . . . 5
⊢ ({x} ∈ V ↔
∃y
y = {x}) |
5 | | axprimlem1 4089 |
. . . . . 6
⊢ (y = {x} ↔
∀z(z ∈ y ↔
z = x)) |
6 | 5 | exbii 1582 |
. . . . 5
⊢ (∃y y = {x} ↔
∃y∀z(z ∈ y ↔ z =
x)) |
7 | 4, 6 | bitri 240 |
. . . 4
⊢ ({x} ∈ V ↔
∃y∀z(z ∈ y ↔ z =
x)) |
8 | 3, 7 | mpbir 200 |
. . 3
⊢ {x} ∈
V |
9 | 2, 8 | vtoclg 2915 |
. 2
⊢ (A ∈ V →
{A} ∈
V) |
10 | | snprc 3789 |
. . . 4
⊢ (¬ A ∈ V ↔
{A} = ∅) |
11 | 10 | biimpi 186 |
. . 3
⊢ (¬ A ∈ V →
{A} = ∅) |
12 | | 0ex 4111 |
. . 3
⊢ ∅ ∈
V |
13 | 11, 12 | syl6eqel 2441 |
. 2
⊢ (¬ A ∈ V →
{A} ∈
V) |
14 | 9, 13 | pm2.61i 156 |
1
⊢ {A} ∈
V |