| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > axprimlem1 | GIF version | ||
| Description: Lemma for the primitive axioms. Primitive form of equality to a singleton. (Contributed by SF, 25-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| axprimlem1 | ⊢ (a = {B} ↔ ∀c(c ∈ a ↔ c = B)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcleq 2347 | . 2 ⊢ (a = {B} ↔ ∀c(c ∈ a ↔ c ∈ {B})) | |
| 2 | elsn 3749 | . . . 4 ⊢ (c ∈ {B} ↔ c = B) | |
| 3 | 2 | bibi2i 304 | . . 3 ⊢ ((c ∈ a ↔ c ∈ {B}) ↔ (c ∈ a ↔ c = B)) | 
| 4 | 3 | albii 1566 | . 2 ⊢ (∀c(c ∈ a ↔ c ∈ {B}) ↔ ∀c(c ∈ a ↔ c = B)) | 
| 5 | 1, 4 | bitri 240 | 1 ⊢ (a = {B} ↔ ∀c(c ∈ a ↔ c = B)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {csn 3738 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sn 3742 | 
| This theorem is referenced by: axprimlem2 4090 axsiprim 4094 axtyplowerprim 4095 axins2prim 4096 axins3prim 4097 snex 4112 | 
| Copyright terms: Public domain | W3C validator |