NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax5 GIF version

Theorem ax5 2146
Description: Rederivation of Axiom ax-5 1557 from ax-5o 2136 and other older axioms. See ax5o 1749 for the derivation of ax-5o 2136 from ax-5 1557. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax5 (x(φψ) → (xφxψ))

Proof of Theorem ax5
StepHypRef Expression
1 ax-5o 2136 . . 3 (x(x(φψ) → (xφψ)) → (x(φψ) → x(xφψ)))
2 ax-4 2135 . . . 4 (xφφ)
3 ax-4 2135 . . . 4 (x(φψ) → (φψ))
42, 3syl5 28 . . 3 (x(φψ) → (xφψ))
51, 4mpg 1548 . 2 (x(φψ) → x(xφψ))
6 ax-5o 2136 . 2 (x(xφψ) → (xφxψ))
75, 6syl 15 1 (x(φψ) → (xφxψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1546  ax-4 2135  ax-5o 2136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator