New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax5 | GIF version |
Description: Rederivation of Axiom ax-5 1557 from ax-5o 2136 and other older axioms. See ax5o 1749 for the derivation of ax-5o 2136 from ax-5 1557. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax5 | ⊢ (∀x(φ → ψ) → (∀xφ → ∀xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5o 2136 | . . 3 ⊢ (∀x(∀x(φ → ψ) → (∀xφ → ψ)) → (∀x(φ → ψ) → ∀x(∀xφ → ψ))) | |
2 | ax-4 2135 | . . . 4 ⊢ (∀xφ → φ) | |
3 | ax-4 2135 | . . . 4 ⊢ (∀x(φ → ψ) → (φ → ψ)) | |
4 | 2, 3 | syl5 28 | . . 3 ⊢ (∀x(φ → ψ) → (∀xφ → ψ)) |
5 | 1, 4 | mpg 1548 | . 2 ⊢ (∀x(φ → ψ) → ∀x(∀xφ → ψ)) |
6 | ax-5o 2136 | . 2 ⊢ (∀x(∀xφ → ψ) → (∀xφ → ∀xψ)) | |
7 | 5, 6 | syl 15 | 1 ⊢ (∀x(φ → ψ) → (∀xφ → ∀xψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1546 ax-4 2135 ax-5o 2136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |