New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5 | GIF version |
Description: A syllogism rule of inference. The first premise is used to replace the second antecedent of the second premise. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-May-2013.) |
Ref | Expression |
---|---|
syl5.1 | ⊢ (φ → ψ) |
syl5.2 | ⊢ (χ → (ψ → θ)) |
Ref | Expression |
---|---|
syl5 | ⊢ (χ → (φ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5.1 | . . 3 ⊢ (φ → ψ) | |
2 | syl5.2 | . . 3 ⊢ (χ → (ψ → θ)) | |
3 | 1, 2 | syl5com 26 | . 2 ⊢ (φ → (χ → θ)) |
4 | 3 | com12 27 | 1 ⊢ (χ → (φ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl56 30 syl2im 34 imim12i 53 pm2.86d 93 con2d 107 con3d 125 nsyli 133 syl5bi 208 syl5bir 209 syl5ib 210 adantld 453 adantrd 454 mpan9 455 pm4.79 566 pm2.36 816 pm4.72 846 ecased 910 ecase3ad 911 syl3an2 1216 alrimdh 1587 ax11w 1721 ax12dgen2 1726 ax5o 1749 spsd 1755 hbnt 1775 nfndOLD 1792 stdpc5OLD 1799 19.21hOLD 1840 cbv3hvOLD 1851 ax12olem5 1931 a16g 1945 hbae 1953 dvelimh 1964 exdistrf 1971 ax11a2 1993 sbft 2025 sbied 2036 sb4 2053 ax11v 2096 ax11vALT 2097 ax5 2146 hbae-o 2153 dvelimf-o 2180 ax11indn 2195 ax11inda2 2199 ax11a2-o 2202 euimmo 2253 mopick 2266 spcimgft 2930 rr19.28v 2981 moeq3 3013 mob2 3016 euind 3023 reuind 3039 sbeqalb 3098 sbcimdv 3107 csbexg 3146 opkthg 4131 nndisjeq 4429 sfin112 4529 sfintfin 4532 sfinltfin 4535 vfinspsslem1 4550 vfinspss 4551 phi11lem1 4595 copsexg 4607 dmcosseq 4973 ssreseq 4997 dfco2a 5081 imadif 5171 dff4 5421 foco2 5426 funfvima2 5460 oprabid 5550 ovmpt4g 5710 ov2gf 5711 fvmptf 5722 fvmptnf 5723 clos1conn 5879 connexd 5931 ectocld 5991 enmap2lem3 6065 enmap1lem3 6071 enprmaplem3 6078 enprmaplem5 6080 enprmaplem6 6081 ncdisjun 6136 nceleq 6149 peano4nc 6150 ncssfin 6151 fce 6188 lectr 6211 leltctr 6212 taddc 6229 tlecg 6230 nclenn 6249 addcdi 6250 ncslesuc 6267 nchoicelem9 6297 nchoicelem15 6303 nchoicelem17 6305 dmfrec 6316 fnfreclem3 6319 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |