New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax6 | GIF version |
Description: Rederivation of Axiom ax-6 1729 from ax-6o 2137 and other older axioms. See ax6o 1750 for the derivation of ax-6o 2137 from ax-6 1729. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax6 | ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5o 2136 | . . 3 ⊢ (∀x(∀x ¬ ∀x∀xφ → ¬ ∀xφ) → (∀x ¬ ∀x∀xφ → ∀x ¬ ∀xφ)) | |
2 | ax-4 2135 | . . . 4 ⊢ (∀x ¬ ∀x∀xφ → ¬ ∀x∀xφ) | |
3 | ax-5o 2136 | . . . . 5 ⊢ (∀x(∀xφ → ∀xφ) → (∀xφ → ∀x∀xφ)) | |
4 | id 19 | . . . . 5 ⊢ (∀xφ → ∀xφ) | |
5 | 3, 4 | mpg 1548 | . . . 4 ⊢ (∀xφ → ∀x∀xφ) |
6 | 2, 5 | nsyl 113 | . . 3 ⊢ (∀x ¬ ∀x∀xφ → ¬ ∀xφ) |
7 | 1, 6 | mpg 1548 | . 2 ⊢ (∀x ¬ ∀x∀xφ → ∀x ¬ ∀xφ) |
8 | ax-6o 2137 | . 2 ⊢ (¬ ∀x ¬ ∀x∀xφ → ∀xφ) | |
9 | 7, 8 | nsyl4 134 | 1 ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-4 2135 ax-5o 2136 ax-6o 2137 |
This theorem is referenced by: hba1-o 2149 ax467 2169 equidq 2175 |
Copyright terms: Public domain | W3C validator |